The absolutely maximally entangled (AME) state is a concept in quantum information science, which has many applications in quantum error-correcting code,[1] discrete AdS/CFT correspondence,[2] AdS/CMT correspondence,[2] and more. It is the multipartite generalization of the bipartite maximally entangled state.

Definition

The bipartite maximally entangled state is the one for which the reduced density operators are maximally mixed, i.e., . Typical examples are Bell states.

A multipartite state of a system is called absolutely maximally entangled if for any bipartition of , the reduced density operator is maximally mixed , where .

Property

The AME state does not always exist; in some given local dimension and number of parties, there is no AME state. There is a list of AME states in low dimensions created by Huber and Wyderka.[3][4]

The existence of the AME state can be transformed into the existence of the solution for a specific quantum marginal problem.[5]

The AME can also be used to build a kind of quantum error-correcting code called holographic error-correcting code.[2][6][7]

References

  1. Goyeneche, Dardo; Alsina, Daniel; Latorre, José I.; Riera, Arnau; Życzkowski, Karol (2015-09-15). "Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices". Physical Review A. 92 (3): 032316. arXiv:1506.08857. Bibcode:2015PhRvA..92c2316G. doi:10.1103/PhysRevA.92.032316. hdl:1721.1/98529. S2CID 13948915.
  2. 1 2 3 Pastawski, Fernando; Yoshida, Beni; Harlow, Daniel; Preskill, John (2015-06-23). "Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence". Journal of High Energy Physics. 2015 (6): 149. arXiv:1503.06237. Bibcode:2015JHEP...06..149P. doi:10.1007/JHEP06(2015)149. ISSN 1029-8479. S2CID 256004738.
  3. Huber, F.; Wyderka, N. "Table of AME states".
  4. Huber, Felix; Eltschka, Christopher; Siewert, Jens; Gühne, Otfried (2018-04-27). "Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity". Journal of Physics A: Mathematical and Theoretical. 51 (17): 175301. arXiv:1708.06298. Bibcode:2018JPhA...51q5301H. doi:10.1088/1751-8121/aaade5. ISSN 1751-8113. S2CID 12071276.
  5. Yu, Xiao-Dong; Simnacher, Timo; Wyderka, Nikolai; Nguyen, H. Chau; Gühne, Otfried (2021-02-12). "A complete hierarchy for the pure state marginal problem in quantum mechanics". Nature Communications. 12 (1): 1012. arXiv:2008.02124. Bibcode:2021NatCo..12.1012Y. doi:10.1038/s41467-020-20799-5. ISSN 2041-1723. PMC 7881147. PMID 33579935.
  6. "Holographic code". "Holographic code", The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. 2022.
  7. Pastawski, Fernando; Preskill, John (2017-05-15). "Code Properties from Holographic Geometries". Physical Review X. 7 (2): 021022. arXiv:1612.00017. Bibcode:2017PhRvX...7b1022P. doi:10.1103/PhysRevX.7.021022. S2CID 44236798.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.