Astyanax altiparanae
Illustration of female and male Astyanax altiparanae
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Order: Characiformes
Family: Characidae
Genus: Astyanax
Species:
A. altiparanae
Binomial name
Astyanax altiparanae
Garutti & Britski, 2000

Astyanax altiparanae, sometimes called the yellow-tail tetra or yellow-tail lambari, is a species of schooling freshwater fish widely distributed across the southern half of South America. It is an ecologically flexible species, able to adapt to various resource and space conditions, and its diet follows this pattern; it is considered opportunistic and omnivorous. Its widespread nature and unspecified ecology contribute to its status as a species of least concern on the IUCN Red List. It was originally described from the upper Paraná river basin, which is the origin of its specific epithet; "alto" means "higher" in Brazilian Portuguese, hence "alto Paraná".

It matures early, reproduces quickly, and accepts laboratory conditions with ease, which makes it a good model organism. It can also be used as a living indicator for environmental conditions, as the composition of its scales often reflects the availability of different resources in its environment, and it responds to various pollutants in ways that can be easily measured. Because A. altiparanae can be kept in captivity with few problems, it has recently become a large part of the aquaculture scene in South America. It is used both for live bait and for human consumption, so farming both prevents overfishing of wild specimens and prevents introduction of exotic species for these purposes.

As a part of the Astyanax bimaculatus species complex, A. altiparanae is one of many species with unclear cladistic status in the genus Astyanax. Some researchers consider it synonymous with Astyanax lacustris, but there are various data that suggest the two should remain separate, including chromosomal, mitochondrial, and geographical. Studies of generic phylogeny are ongoing.

Taxonomy

Astyanax altiparanae was first described in 2000 by Brazilian scientists Valdener Garutti and Heraldo A. Britski. They commented on its connection to Astyanax bimaculatus, which is at the center of a species complex to which A. altiparanae belongs, and to A. lacustris; in this context, A. lacustris was differentiated from A. altiparanae largely by geographical distribution.[2] A. altiparanae was first described from the upper Paraná river basin.

Astyanax altiparanae and Astyanax lacustris are considered synonymous by some sources.[3] The amount of morphological and meristic overlap raises questions about the validity of the two species as distinct entities.[4] However, there is evidence to suggest that they may instead be sister species (two species that are more closely related to each other than to other members of the genus). Such diversification was likely driven by tectonic activity and fluctuations in sea level, which is something that stands for all members of Astyanax related to A. altiparanae; specifically, this is true for all species within the Astyanax bimaculatus species complex.[5]

Astyanax altiparanae is considered a cryptic species - that is, a species more than likely made up of two or more species currently considered synonymous. Genetic evidence supports a possible second species within A. altiparanae's current definition; there are at least two distinct haplotypes, or sets of alleles clearly inherited from one lineage over another.[6]

Etymology

The species name "altiparanae" is a Latinization of the Brazilian Portuguese word "alto", which means "high", and Paraná, in reference to the type locality of the species.[2] The genus name "Astyanax" is an allusion to Homer's Iliad, referencing the Trojan prince of the same name; the reason for this was not made clear in the original text. One possibility is the large, armor-like scales of type species A. argentatus (which is now largely considered a synonym of A. mexicanus).[7][8]

Common names most frequently used include "yellow-tail tetra" and "yellow-tail lambari", in reference to the bright yellow fins.[6]

Description

Astyanax altiparanae reaches a maximum of 16.4 cm (6.5 in) total length.[9] Its maximum weight is 60 g. Its base body color is generally a dark silver, with bright-yellow fins, and the darker dorsal region fades into a whitish ventral region;[2] when exposed to the stressful conditions of lowered water temperature, these colors darken to a dark-gray and more desaturated yellow.[10] Markings include two brownish vertical bars in the humeral region, a black humeral spot shaped like a horizontal oval, and a black mark on the caudal peduncle that extends all the way to the edges of the median caudal rays.[4] This is a pattern it shares with congener Astyanax bimaculatus, which is part of why A. altiparanae is considered a part of the A. bimaculatus species complex.[6]

Astyanax altiparanae has an average of 12 dorsal-fin rays, 11 pectoral-fin rays, 9 pelvic-fin rays, 27 anal-fin rays, and 19 caudal-fin rays. It has 33–41 lateral-line scales, averaging 36. There are 7 scale rows above the lateral line, and 6 beneath it. The premaxilla sports 5 teeth.[11] In specimens up to 60 mm, the dorsal-fin origin is behind the middle of the body, and in larger specimens, it is at the middle or in front of it. The lower half of the body (below the lateral line) is larger than the upper.[2] The jaws are somewhat protractile.[12]

This preserved specimen is a female. The body would be more slender on a male.

Sexual dimorphism

Males above 48 mm demonstrate bony hooks or spines on the anal and ventral fins.[3] These spines were originally thought to be an indicator of sexual maturity, but they have been observed in immature specimens, more frequently during the summer.[13] Females also have more prominent bellies than males, and this is evident even in subadult specimens.[14] Females are the larger of the two sexes.

Distribution

Astyanax altiparanae can be found commonly in the Paraná and Iguaçu Rivers,[11] but it inhabits most rivers in the southern half of South America.[15][16] It was momentarily thought to be endemic to the upper Paraná basin, but this has since been disproved;[17] A. altiparanae is an incredibly widespread species, thanks largely to its adaptability. This is something it shares with congener A. bimaculatus, and the two in combination are some of the most widely distributed fishes across the Neotropical region.[18]

Behavior

Astyanax altiparanae tends to occupy the upper portion of the water column, but this preference is only demonstrated in areas with ample space for groups to spread out. In smaller areas, the entire environment is used, indicating further adaptability to surroundings.[19] When given the opportunity to form separate schools, larger individuals form schools of about 15 fish, and tend to occupy slightly deeper waters. Smaller individuals form larger schools of approximately 50 fish, and stay near the surface of the water; they more often occupy space near the riverbanks (especially when there is plentiful aquatic vegetation).[20]

Diet and feeding

Astyanax altiparanae is a nektonic (group-dwelling) omnivore with the ability to adapt its diet to its environment.[21][22] In comparison with many fish species, including several congeners, its flexible response to resource availability is notable.[23] For instance, populations in larger rivers favor preying upon microcrustaceans, but populations in streams more often consume plant material.[24] (The numerous gill rakers of A. altiparanae assist in retention of particulate or microscopic food.)[12] The rainy season correlates with higher consumption of allochthonous material, especially at sites with ample riparian vegetation and especially in terms of arthropods.[25] The intestinal tract of all Astyanax species has a thick muscle wall that likely helps protect against endoparasites.[26]

In captive A. altiparanae, treatment with oregano oil has been shown to increase height, width, and increased surface area of intestinal folds. This may be due to oregano oil's antimicrobial properties, which could have reduced the relevant negative activity in the intestines; without the resource expenditure of replacing damaged cells therein, overall growth may have been improved.[26] Oregano oil also increased the thickness of the intestinal muscular wall, likely for the same reason, and probably had indirect antiparasitic effects as a result.

Trophic role

Astyanax altiparanae serves as an important part of the trophic web in various river basins throughout its range, largely because it serves as a food source for many piscivorous species therein.[24] (Species from Astyanax as a whole, not just A. altiparanae, fill this role in many South American regions.)[17] Specific predators of A. altiparanae include Salminus hilarii and Hoplias malabaricus, which rely heavily upon it in the Corrente River,[27] as well as characid species Acestrorhynchus lacustris.[28] It is subject to parasitic infestation in the gills and face by the copepod Lernaea cyprinacea,[29] as well as at least fifteen species of metazoan parasites.[30]

Humans are amongst further predators of A. altiparanae, but should exercise caution; pollutants, especially of a class called Persistent Organic Pollutants (POPs), accumulate in various bodily tissues, and can be transferred to consumers.[31]

Role as a bioindicator

Given its widespread nature and general adaptability, A. altiparanae is an ideal species to use as a bioindicator for various aspects of ecosystem health.[23] This is especially the case given the fact that it can change its diet to fit its surroundings, and its physiological response therefore reflects the health and primary food sources it utilizes within said environment.[21] The composition of the scales draws upon such factors, which is a source of clear data regarding the origin of individual specimens.[23] (Scale composition as a result of environmental factors can also influence phenotypic characteristics.)[21]

Astyanax altiparanae can be used as a bioindicator of zinc contamination given that its physiological response can be easily monitored through blood tests. While zinc is an essential component for life, excess zinc serves as a genotoxin, and this manifests in A. altiparanae in the form of micronuclei in the red blood cells (erythrocytes).[22] The presence of a micronucleus results from a chromosome (or chromosome fragment) that is not carried into one of the nuclei that forms during cell division, essentially being "left behind"; this is a flag for genotoxic influence and chromosomal instability.

Copper is another metal that, in high concentrations, damages the DNA of A. altiparanae, and it also accumulates in various tissues and systems throughout the body. As such, A. altiparanae can also be used to measure copper toxicity in a given environment, especially given that other fish species appear to react less adversely.[32] Furthermore, copper can travel up the trophic chain, which results in long-lasting genotoxic effects for any species that regularly prey upon A. altiparanae. This was specifically tested in species Hoplias malabaricus, a predatory characiform fish sometimes called the trahira.[33]

Other metals that A. altiparanae can measure include aluminum, iron, manganese, chromium, cadmium, and nickel. A. altiparanae, if exposed to adverse conditions (such as water from sites demonstrating such metal contamination), can be used as an indicator of genotoxic events.[34] Upon early research (yet unreviewed), various types of textile dyes were also discovered to have apparent genotoxic effects upon A. altiparanae, which broadens the range of contaminants it can signal. Dye toxicity was evaluated by the presence of chromosomal breaks, as well as changes in the distribution and quantity of constitutive heterochromatin.[35] (Constitutive heterochromatin domains are specific regions of DNA in the chromosomes.)

Outside of genotoxicity, A. altiparanae can also signal the presence of pesticide contamination; specifically, this regards the compound atrazine, which is one of the most widely used pesticides in commercial farming. A. altiparanae responds to atrazine with oxidative stress and histological symptoms (microscopic tissue damage) in various bodily systems.[36]

Biology

Astyanax altiparanae has been recently, and strongly, considered for status as a model organism - that is, a species upon which various tests can be performed in laboratory conditions, yielding data and techniques that go on to be useful in related research. Several aspects make it useful therein. These include its small size, its ready acceptance of captivity, an early sexual maturation, an easily managed reproductive cycle, and external sexual dimorphism.[3] It is also readily available from the commercial market, which makes it easy to obtain and therefore experiment with, as long as natural environmental conditions are not being taken into consideration.

Genetics

Astyanax altiparanae is one of multiple fish species for which the chromosome number is 2n = 50, though this number does vary within the genus;[37] for instance, in Astyanax schubarti, it is 2n = 36.[38] (Humans have a chromosome number of 2n = 46.) A. altiparanae is a chromosomally diverse species, with 22 described cytotypes.[39] (A cytotype is a set of genetic characteristics that include karyotype, the general morphology of the chromosomes, and mitochondrial DNA, information encoded within a specific DNA cluster found in the mitochondria - rather than the nucleus - of a cell.) For instance, the karyotype formulae differ in populations of A. altiparanae depending on location;[40] this has been documented specifically in populations of the upper Tibagi river and of the upper Iguaçu river.[41]

The average size of the mitochondrial genome for A. altiparanae is estimated to be 16.0 kb.[42] Study of the mitogenome of A. altiparanae supports its species status, as opposed to a junior synonym of A. lacustris.[43] Similarities in mitochondrial DNA between two separate populations of A. altiparanae helped to broaden its range in the early years of its discovery and study.[17]

Reproduction and induced sterility

For juvenile A. altiparanae, there is little parental care, and adults do not form dedicated pairs.[44] Spawning occurs in the stretch from September to March, which encompasses the rainy season of the year, and happens in batches.[24] The genus Astyanax demonstrates variation in spawning tactics, with several species using batch spawning and others total spawning (laying all eggs at one time); there is evidence to suggest that environmental factors could induce one or the other. A reproductive peak for A. altiparanae occurs between October and February.[45] Higher reproduction rates in the rainy season can possibly be explained by an increase in food availability; specifically, A. altiparanae would be feeding upon allochthonous material washed in from the surrounding environment.[19] The eggs of this species are adhesive.[46]

Astyanax altiparanae has been considered for surrogate propagation, a process that allows animals to produce gametes from another species, which would be used in the conservation of endangered relatives.[47] For this process, sterile specimens of A. altiparanae are needed so that none of the host's genes interfere with exogenous production.[48] One method to ensure sterility is to obtain triploid specimens (as opposed to haploid, which is standard). Acute heat exposure is a method of triploidization that arose after experiments using chronic heat exposure to the same ends were unsuccessful.[49] Another method, considered more reliable for continued production, is to breed tetraploid females and haploid males, which results in triploid offspring.[50]

Presence and behavior in aquaria

Astyanax altiparanae is known to adapt readily to aquarium and laboratory environments, which contributes to its recent status as a model organism.[3] This includes ease of diet management; for instance, A. altiparanae demonstrates no favor towards one source of lipids over another (e.g. vegetable vs. animal fat sources), which means any source could be reliably used to fulfill that dietary need.[51] It is already a large part of aquaculture in South America because it can be used for various purposes, such as food or live bait, and a high production of captive specimens reduces the risk of overfishing.[14][49] It also helps decrease the risk of invasive species introduction; if there a native species readily available for relevant purposes, exotic species are unlikely to be introduced into the niche.

A hormonal treatment called Carp Pituitary Extract (CPE) has been proven as a way to increase reproduction rates in captive female specimens.[14] Female specimens are generally considered more advantageous for aquaculture purposes because they are larger and grow more quickly; as such, methods for producing more females than males have been tested. One method with a high success rate is treating larvae with estradiol valerate, which has produced batches of fish that are 70-76% female in laboratory conditions, as opposed to a control group of 44% female.[52]

Experiments with A. altiparanae have been conducted for stress reduction in situations of air exposure, which is common in various captivity scenarios, such as aquaculture or sport-fishing; clove oil in a low concentration was found to be one potential stress management technique for the improvement of animal welfare.[53] A. altiparanae also tolerates limited salinity, which can be used to mitigate stress responses as well; in some fish species, blood glucose rises upon agitation, possibly to prepare the animal for a fight-or-flight scenario. Salt in water has been shown to temper this response in A. altiparanae.[54]

Conservation status

Astyanax altiparanae is considered a species of least concern by the IUCN. Given its wide range, high population numbers, and adaptability, there are no factors that pose an imminent threat to its conservation status.[1] This is positive for various aspects of the regions it inhabits, partially due to its important role in a low tier on the food chain, serving as a source for various piscivores.[24] Efforts to ensure A. altiparanae's continued success should take the health of riparian vegetation into consideration, as allochthonous material makes up a great deal of its diet in regions without adequate waterborne resources.[25]

References

  1. 1 2 Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). (2022). "Astyanax altiparanae". IUCN Red List of Threatened Species. 2022: e.T186416A1812732. Retrieved 7 March 2023.
  2. 1 2 3 4 Garutti, V.; Britski, H. A. (2000). "Descrição de uma espécie nova de Astyanax (Teleostei: Characidae) da bacia do alto rio Paraná e considerações sobre as demais espécies do gênero na bacia" (PDF). Comunicações do Museu de Ciências e Tecnologia, Série Zoologia (in Portuguese). Porto Alegre. 13: 65–88. ISSN 0104-6950. Retrieved 14 March 2023.
  3. 1 2 3 4 Yasui, George Shigueki; Ferreira do Nascimento, Nivaldo; Pereira-Santos, Matheus; Santos Silva, Amanda Pereira dos; Coelho, Geovanna Carla Zacheo; Visintin, José Antônio; Porto-Foresti, Fábio; Okada Nakaghi, Laura Satiko; Vianna, Norberto Castro; Carvalho, Gabriela Braga; Monzani, Paulo Sérgio; López, Lucia Suárez; Senhorini, José Augusto (30 November 2022). "Establishing a model fish for the Neotropical region: The case of the yellowtail tetra Astyanax altiparanae in advanced biotechnology". Frontiers in Genetics. 13: 903990. doi:10.3389/fgene.2022.903990. PMC 9749136. PMID 36531235.
  4. 1 2 Peres, Wellington Adriano Moreira; Bertollo, Luiz Antonio Carlos; Buckup, Paulo Andreas; Blanco, Daniel Rodrigues; Kantek, Daniel Luis Zanella; Moreira-Filho, Orlando (June 2012). "Invasion, dispersion and hybridization of fish associated to river transposition: karyotypic evidence in Astyanax "bimaculatus group" (Characiformes: Characidae)". Reviews in Fish Biology and Fisheries. 22 (2): 519–526. doi:10.1007/s11160-011-9246-2. S2CID 254979343.
  5. Cunha, Marina S.; Fregonezi, Aline R.; Fava, Lucioni; Hilsdorf, Alexandre W. S.; Campos, Lucio A. O.; Dergam, Jorge A. (February 2019). "Phylogeography and Historical Biogeography of the Astyanax bimaculatus Species Complex (Teleostei: Characidae) in Coastal Southeastern South America". Zebrafish. 16 (1): 115–127. doi:10.1089/zeb.2018.1668. PMID 30457941. S2CID 53943624.
  6. 1 2 3 Deprá, I.C.; Gomes, V.N.; Deprá, G.C.; Oliveira, I.J.; Prioli, S.M.A.P.; Prioli, A.J. (2014). "Molecular study of Astyanax altiparanae (Osteichthyes, Characidae) as a probable species complex". Genetics and Molecular Research. 13 (3): 6015–6026. doi:10.4238/2014.August.7.16. PMID 25117359.
  7. Scharpf, Christopher; Lazara, Kenneth J. (29 December 2022). "Order CHARACIFORMES: Family CHARACIDAE: Subfamily STETHAPRIONINAE (a-g)". The ETYFish Project. Retrieved 17 February 2023.
  8. Astyanax argentatus Baird & Girard, 1854. Bailly, Nicolas. Retrieved through: World Register of Marine Species on 2 March 2023.
  9. Froese, Rainer; Pauly, Daniel (eds.) (2023). "Astyanax altiparanae" in FishBase. March 2023 version.
  10. Vieira, Uyara Duarte (18 June 2015). Resposta De Estresse E Mortalidade Em Lambaris-dorabo-amarelo (Astyanax Altiparanae) (Garutti & Britski, 2000) Submetidos À Redução Da Temperatura Da Água (PDF) (Master's). Universidade Federal de Viçosa. Retrieved 15 March 2023.
  11. 1 2 da Graça, Weferson Júnio; Pavanelli, C. S. (February 2002). "Astyanax altiparanae Garutti & Britski, 2000 (Osteichthyes, Characidae) in the Iguaçu River basin". Acta Scientiarum Biological Sciences. 24 (2): 451–453.
  12. 1 2 Peretti, D.; Andrian, I. (August 2008). "Feeding and morphological analysis of the digestive tract of four species of fish (Astyanax altiparanae, Parauchenipterus galeatus, Serrasalmus marginatus and Hoplias aff. malabaricus) from the upper Paraná River floodplain, Brazil". Brazilian Journal of Biology. 68 (3): 671–679. doi:10.1590/S1519-69842008000300027. PMID 18833491.
  13. Siqueira-Silva, Diógenes H.; Bertolini, Rafaela M.; Levy-Pereira, Nycolas; Nascimento, Nivaldo F.; Senhorini, José A.; Piva, Lucas Henrique; Ferraz, José Bento S.; Yasui, George S. (2021). "Factors affecting secondary sex characteristics in the yellowtail tetra, Astyanax altiparanae". Fish Physiology and Biochemistry. 47 (3): 737–746. bioRxiv 10.1101/698100. doi:10.1007/s10695-020-00832-6. PMID 32556899. S2CID 203880994.
  14. 1 2 3 Roza de Abreu, Mariana; Silva, Laíza Maria de Jesus; Figueiredo‐Ariki, Daniel Guimarães; Sato, Rafael Tomoda; Kuradomi, Rafael Yutaka; Batlouni, Sergio Ricardo (February 2021). "Reproductive performance of lambari ( Astyanax altiparanae ) in a seminatural system using different protocols". Aquaculture Research. 52 (2): 471–483. doi:10.1111/are.14905. S2CID 225012677.
  15. Smith, Welber Senteio; Petrere Jr, Miguel; Barrella, Walter (September 2003). "The fish fauna in tropical rivers: The case of the Sorocaba river basin, SP, Brazil". Revista de Biología Tropical. 52 (3). Retrieved 15 March 2023.
  16. Cionek, Vivian De Mello; Sacramento, Patricia Almeida; Zanatta, Naiara; Ota, Rafaela Priscila; Corbetta, Daiany De Fatima; Benedito, Evanilde (1 November 2012). "Fishes from first order streams of lower Paranapanema and Ivaí rivers, upper Paraná River basin, Paraná, Brazil". Check List. 8 (6): 1158. doi:10.15560/8.6.1158. Retrieved 15 March 2023.
  17. 1 2 3 Prioli, Sônia M.A.P.; Prioli, Alberto J.; Júlio Jr., Horácio F.; Pavanelli, Carla S.; Oliveira, Alessandra V. de; Carrer, Helaine; Carraro, Dirce M.; Prioli, Laudenir M. (2002). "Identification of Astyanax altiparanae (Teleostei, Characidae) in the Iguaçu River, Brazil, based on mitochondrial DNA and RAPD markers". Genetics and Molecular Biology. 25 (4): 421–430. doi:10.1590/S1415-47572002000400011.
  18. Kavalco, K.F.; Pazza, R.; Brandão, K.d.O.; Garcia, C.; Almeida-Toledo, L.F. (2011). "Comparative Cytogenetics and Molecular Phylogeography in the Group Astyanax altiparanae – Astyanax aff. bimaculatus (Teleostei, Characidae)". Cytogenetic and Genome Research. 134 (2): 108–119. doi:10.1159/000325539. PMID 21447941. S2CID 46290517.
  19. 1 2 Orsi, Mário Luís; Carvalho, Edmir Daniel; Foresti, Fausto (June 2004). "Biologia populacional de Astyanax altiparanae Garutti & Britski (Teleostei, Characidae) do médio Rio Paranapanema, Paraná, Brasil". Revista Brasileira de Zoologia. 21 (2): 207–218. doi:10.1590/S0101-81752004000200008. hdl:11449/28363.
  20. Suzuki, Fábio M.; Orsi, Mário L. (September 2008). "Formação de cardumes por Astyanax altiparanae (Teleostei: Characidae) no Rio Congonhas, Paraná, Brasil". Revista Brasileira de Zoologia. 25 (3): 566–569. doi:10.1590/S0101-81752008000300026.
  21. 1 2 3 Santana, C.A.; Andrade, L.H.C.; Súarez, Y.R.; Yukimitu, K.; Moraes, J.C.S.; Lima, S.M. (September 2015). "Fourier transform-infrared photoacoustic spectroscopy applied in fish scales to access environmental integrity: A case study of Astyanax altiparanae species". Infrared Physics & Technology. 72: 84–89. doi:10.1016/j.infrared.2015.07.005. hdl:11449/160875. S2CID 117099066.
  22. 1 2 Vaz S. Silva, Sabrina; Dias, Aurélio Henrique C.; Dutra, Elaine S.; Pavanin, Alfredo L.; Morelli, Sandra; Pereira, Boscolli B. (2 January 2016). "The impact of water pollution on fish species in southeast region of Goiás, Brazil". Journal of Toxicology and Environmental Health, Part A. 79 (1): 8–16. doi:10.1080/15287394.2015.1099484. PMID 26699803. S2CID 11853994.
  23. 1 2 3 de Almeida, F.S.; Santana, C.A.; Lima, D.M.V.; Andrade, L.H.C.; Súarez, Y.R.; Lima, S.M. (May 2016). "Discrimination of Astyanax altiparanae (Characiformes, Characidae) populations by applying Fourier transform-infrared photoacoustic spectroscopy in the fish scales". Infrared Physics & Technology. 76: 303–307. doi:10.1016/j.infrared.2015.12.019.
  24. 1 2 3 4 Peres, Maria Dolores; Vasconcelos, Marcio dos Santos; Renesto, Erasmo (December 2005). "Genetic variability in Astyanax altiparanae Garutti & Britski, 2000 (Teleostei, Characidae) from the Upper Paraná River basin, Brazil". Genetics and Molecular Biology. 28 (4): 717–724. doi:10.1590/S1415-47572005000500011.
  25. 1 2 Viana, Lucilene Finoto; Suarez, Yzel Rondon; Lima-Junior, Sidnei Eduardo (18 December 2013). "Influence of environmental integrity on the feeding biology of Astyanax altiparanae (Garutti & Britski, 2000) in the Ivinhema river basin - doi: 10.4025/actascibiolsci.v35i4.19497". Acta Scientiarum. Biological Sciences. 35 (4): 541–548. doi:10.4025/actascibiolsci.v35i4.19497.
  26. 1 2 Ferreira, Pollyanna M.F.; Caldas, Débora W.; Salaro, Ana Lúcia; Sartori, Sirlene S.R.; Oliveira, Jerusa M.; Cardoso, Alex J.S.; Zuanon, Jener A.S. (June 2016). "Intestinal and liver morphometry of the Yellow Tail Tetra (Astyanax altiparanae) fed with oregano oil". Anais da Academia Brasileira de Ciências. 88 (2): 911–922. doi:10.1590/0001-3765201620150202. PMID 27331801.
  27. Angelini, Ronaldo; Aloísio, Gustavo Ribeiro; Carvalho, Adriana Rosa (2010). "Mixed food web control and stability in a Cerrado river (Brazil)" (PDF). Pan-American Journal of Aquatic Sciences. 5 (3): 421–431. Retrieved 15 March 2023.
  28. "Acestrorhynchus lacustris (a fish, no common name) Ecological Risk Screening Summary" (PDF). www.fws.gov. U.S. Fish and Wildlife Service. 11 June 2018. Retrieved 15 March 2023.
  29. Corrêa, Ll; Tavares-Dias, M; Ceccarelli, Ps; Adriano, Ea (15 June 2016). "Hematological alterations in Astyanax altiparanae (Characidade) caused by Lernaea cyprinacea (Copepoda: Lernaeidae)". Diseases of Aquatic Organisms. 120 (1): 77–81. doi:10.3354/dao03008. PMID 27304872. S2CID 207636143.
  30. Camargo, Aline de Almeida; Negrelli, Débora Caroline; Pedro, Natacha Heloísa Olavo; Azevedo, Rodney Kozlowiski de; Silva, Reinaldo José da; Abdallah, Vanessa Doro (8 March 2016). "Metazoan parasite of lambari Astyanax altiparanae, collected from the Peixe river, São Paulo, southeast of Brazil". Ciência Rural. 46 (5): 876–880. doi:10.1590/0103-8478cr20151100. hdl:11449/177896.
  31. Stremel, Tatiana R. de O.; Silva, Cleber Pinto da; Domingues, Cinthia E.; Voigt, Carmem Lucia; Pedroso, Carlos Raphael; Vidal, Carlos Magno de Sousa; Campos, Sandro X. (14 February 2023). "Bioaccumulation of Persistent Organic Pollutants in Neotropical Fish Astyanax Altiparanae" (PDF). Research Square (Preprint). doi:10.21203/rs.3.rs-2518783/v1. Retrieved 15 March 2023.
  32. de Paula, Angélica Alves; Risso, Wagner Ezequiel; Martinez, Claudia Bueno dos Reis (August 2021). "Effects of copper on an omnivorous (Astyanax altiparanae) and a carnivorous fish (Hoplias malabaricus): A comparative approach". Aquatic Toxicology. 237: 105874. doi:10.1016/j.aquatox.2021.105874. PMID 34090247. S2CID 235353522.
  33. de Paula, Angélica Alves; Risso, Wagner Ezequiel; Martinez, Claudia Bueno dos Reis (November 2022). "What happens to Hoplias malabaricus fed on live prey (Astyanax altiparanae) previously exposed to copper? A multiple biomarker approach". Aquatic Toxicology. 252: 106315. doi:10.1016/j.aquatox.2022.106315. PMID 36195002. S2CID 252581460.
  34. Francisco, Carine De Mendonça; Bertolino, Sueli Moura; De Oliveira Júnior, Robson José; Morelli, Sandra; Pereira, Boscolli Barbosa (18 April 2019). "Genotoxicity assessment of polluted urban streams using a native fish Astyanax altiparanae". Journal of Toxicology and Environmental Health, Part A. 82 (8): 514–523. doi:10.1080/15287394.2019.1624235. PMID 31140379. S2CID 169034133.
  35. Sacco, Vania Aparecida; de Carvalho, Luciana Andréia Borin; Castro, Ana Luiza de Brito Portela (12 April 2022). "Evaluation of the behavior of constitutive heterochromatin in chromosomes of Astyanax altiparanae (Pisces, Characidae) when submitted to the product of fungal remediation of textile dyes" (PDF). Research Square (Preprint). doi:10.21203/rs.3.rs-1472152/v1. Retrieved 15 March 2023.
  36. Destro, Ana Luiza F.; Silva, Stella B.; Gregório, Kemilli P.; de Oliveira, Jerusa M.; Lozi, Amanda A.; Zuanon, Jener Alexandre S.; Salaro, Ana Lúcia; da Matta, Sérgio Luís P.; Gonçalves, Reggiani V.; Freitas, Mariella B. (January 2021). "Effects of subchronic exposure to environmentally relevant concentrations of the herbicide atrazine in the Neotropical fish Astyanax altiparanae". Ecotoxicology and Environmental Safety. 208: 111601. doi:10.1016/j.ecoenv.2020.111601. PMID 33396121. S2CID 228894837.
  37. Piscor, Diovani; Centofante, Liano; Parise-Maltempi, Patricia Pasquali (December 2016). "Highly Similar Morphologies Between Chromosomes Bearing U2 snRNA Gene Clusters in the Group Astyanax Baird and Girard, 1854 (Characiformes, Characidae): An Evolutionary Approach in Species with 2n = 36, 46, 48, and 50". Zebrafish. 13 (6): 565–570. doi:10.1089/zeb.2016.1292. hdl:11449/169827. PMID 27332923.
  38. Martinez, Emanuel; Alves, Anderson; Silveira, Sara M; Foresti, Fausto; Oliveira, Claudio (14 February 2012). "Cytogenetic analysis in the incertae sedis species Astyanax altiparanae Garutti and Britzki, 2000 and Hyphessobrycon eques Steindachner, 1882 (Characiformes, Characidae) from the upper Paraná river basin". Comparative Cytogenetics. 6 (1): 41–51. doi:10.3897/compcytogen.v6i1.1873. PMC 3833770. PMID 24260651. S2CID 18266076.
  39. Rossini, Bruno César; Oliveira, Carlos Alexandre Miranda; Melo, Filipe Augusto Gonçalves de; Bertaco, Vinicius de Araújo; Astarloa, Juan M. Díaz de; Rosso, Juan J.; Foresti, Fausto; Oliveira, Claudio (19 December 2016). "Highlighting Astyanax Species Diversity through DNA Barcoding". PLOS ONE. 11 (12): e0167203. doi:10.1371/journal.pone.0167203. PMC 5167228. PMID 27992537.
  40. Silva, Duilio M.Z.A.; Utsunomia, Ricardo; Pansonato-Alves, José C.; Oliveira, Cláudio; Foresti, Fausto (2015). "Chromosomal Mapping of Repetitive DNA Sequences in Five Species of Astyanax (Characiformes, Characidae) Reveals Independent Location of U1 and U2 snRNA Sites and Association of U1 snRNA and 5S rDNA". Cytogenetic and Genome Research. 146 (2): 144–152. doi:10.1159/000438813. hdl:11449/160866. PMID 26329975. S2CID 2234807.
  41. Piscor, Diovani; Alves, Anderson Luís; Parise-Maltempi, Patricia Pasquali (February 2015). "Chromosomal Microstructure Diversity in Three Astyanax (Characiformes, Characidae) Species: Comparative Analysis of the Chromosomal Locations of the 18S and 5S rDNAs". Zebrafish. 12 (1): 81–90. doi:10.1089/zeb.2014.1036. PMID 25549064.
  42. Moysés, Cinthia Bachir; Almeida-Toledo, Lurdes F. de (2002). "Restriction fragment length polymorphisms of mitochondrial DNA among five freshwater fish species of the genus Astyanax (Pisces, Characidae)". Genetics and Molecular Biology. 25 (4): 401–407. doi:10.1590/S1415-47572002000400008.
  43. Pasa, Rubens; Menegídio, Fabiano Bezerra; Rodrigues-Oliveira, Igor Henrique; da Silva, Iuri Batista; de Campos, Matheus Lewi Cruz Bonaccorsi; Rocha-Reis, Dinaíza Abadia; Heslop-Harrison, John Seymour; Schwarzacher, Trude; Kavalco, Karine Frehner (22 July 2021). "Ten Complete Mitochondrial Genomes of Gymnocharacini (Stethaprioninae, Characiformes). Insights Into Evolutionary Relationships and a Repetitive Element in the Control Region (D-loop)". Frontiers in Ecology and Evolution. 9: 650783. doi:10.3389/fevo.2021.650783.
  44. Ferreira, D.G.; Lima, S.C.; Frantine-Silva, W.; Silva, J.F.; Apolinário-Silva, C.; Sofia, S.H.; Carvalho, S.; Galindo, B.A. (2016). "Fine-scale genetic structure patterns in two freshwater fish species, Geophagus brasiliensis (Osteichthyes, Cichlidae) and Astyanax altiparanae (Osteichthyes, Characidae) throughout a Neotropical stream" (PDF). Genetics and Molecular Research. 15 (4). doi:10.4238/gmr15048124. PMID 27813557. Retrieved 15 March 2023.
  45. Cassel, Mônica; Chehade, Chayrra; Souza Branco, Giovana; Caneppele, Danilo; Romagosa, Elizabeth; Borella, Maria Inês (August 2017). "Ovarian development and the reproductive profile of Astyanax altiparanae (Teleostei, Characidae) over one year: Applications in fish farming". Theriogenology. 98: 1–15. doi:10.1016/j.theriogenology.2017.04.044. hdl:11449/174542. PMID 28601145.
  46. dos Santos, Matheus Pereira; Yasui, George Shigueki; Xavier, Pedro Luiz Porfírio; de Macedo Adamov, Nadya Soares; do Nascimento, Nivaldo Ferreira; Fujimoto, Takafumi; Senhorini, José Augusto; Nakaghi, Laura Satiko Okada (December 2016). "Morphology of gametes, post-fertilization events and the effect of temperature on the embryonic development of Astyanax altiparanae (Teleostei, Characidae)". Zygote. 24 (6): 795–807. doi:10.1017/S0967199416000101. hdl:11449/162160. PMID 27220819. S2CID 33960994.
  47. de Siqueira-Silva, Diógenes Henrique; dos Santos Silva, Amanda Pereira; Ninhaus-Silveira, Alexandre; Veríssimo-Silveira, Rosicleire (October 2015). "The effects of temperature and busulfan (Myleran) on the yellowtail tetra Astyanax altiparanae (Pisces, Characiformes) spermatogenesis". Theriogenology. 84 (6): 1033–1042. doi:10.1016/j.theriogenology.2015.06.004. PMID 26164805.
  48. Xavier, Pedro L. P.; Senhorini, José A.; Pereira-Santos, Matheus; Fujimoto, Takafumi; Shimoda, Eduardo; Silva, Luciano A.; dos Santos, Silvio A.; Yasui, George S. (25 September 2017). "A Flow Cytometry Protocol to Estimate DNA Content in the Yellowtail Tetra Astyanax altiparanae". Frontiers in Genetics. 8: 131. doi:10.3389/fgene.2017.00131. PMC 5622163. PMID 28993791.
  49. 1 2 Adamov, Nadya Soares de Macedo; Nascimento, Nivaldo Ferreira do; Maciel, Elayna Cristina Silva; Pereira-Santos, Matheus; Senhorini, José Augusto; Calado, Leonardo Luiz; Evangelista, Mariana Machado; Nakaghi, Laura Satiko Okada; Guerrero, Alan Hertz Marín; Fujimoto, Takafumi; Yasui, George Shigueki (October 2017). "Triploid Induction in the Yellowtail Tetra, Astyanax altiparanae , Using Temperature Shock: Tools for Conservation and Aquaculture: TRIPLOIDY IN YELLOWTAIL TETRA, ASTYANAX ALTIPARANAE". Journal of the World Aquaculture Society. 48 (5): 741–750. doi:10.1111/jwas.12390.
  50. Alves, Andreoli Correia; Yasui, George Shigueki; do Nascimento, Nivaldo Ferreira; Monzani, Paulo Sérgio; Senhorini, José Augusto; Pereira dos Santos, Matheus (April 2023). "All-triploid offspring in the yellowtail tetra Astyanax altiparanae Garutti & Britski 2000 (Teleostei, Characidae) derived from female tetraploid × male diploid crosses". Zygote. 31 (2): 123–128. doi:10.1017/S0967199422000569. PMID 36617988. S2CID 255544871.
  51. Chaves, William; Almeida, Érica C.; Carneiro, Cristiana; Magnone, Larisa; Martins, Nilton; Bessonart, Martin; Zuanon, Jener; Salaro, Ana (16 October 2019). "Growth performance of Astyanax altiparanae fed with plant and/or animal lipid sources". Revista de Ciencias Agrícolas. 36 (E): 63–70. doi:10.22267/rcia.1936E.107. S2CID 216575896.
  52. Bem, Jaqueline Cristina de; Fontanetti, Carmem Silvia; Senhorini, José Augusto; Parise-Maltempi, Patricia Pasquali (April 2012). "Effectiveness of estradiol valerate on sex reversion in Astyanax altiparanae (Characiformes, Characidae)". Brazilian Archives of Biology and Technology. 55 (2): 283–290. doi:10.1590/S1516-89132012000200015. hdl:11449/20020.
  53. Oliveira, Ricardo Henrique Franco de; Pereira‐da‐Silva, Elyara Maria; Viegas, Elisabete Maria Macedo (November 2019). "Clove oil attenuates stress responses in lambari, Astyanax altiparanae". Aquaculture Research. 50 (11): 3350–3356. doi:10.1111/are.14293. S2CID 202007467.
  54. Salaro, Ana Lúcia; Campelo, Daniel Abreu Vasconcelos; Tavares, Mateus Moraes; Braga, Luiz Gustavo Tavares; Pontes, Marcelo Duarte; Zuanon, Jener Alexandre Sampaio (6 August 2015). "Transport of Astyanax altiparanae Garutti and Britski, 2000 in saline water". Acta Scientiarum. Biological Sciences. 37 (2): 137. doi:10.4025/actascibiolsci.v37i2.26884.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.