The omega baryons are a family of subatomic hadron (a baryon) particles that are represented by the symbol
Ω
and are either neutral or have a +2, +1 or −1 elementary charge. They are baryons containing no up or down quarks.[1] Omega baryons containing top quarks are not expected to be observed. This is because the Standard Model predicts the mean lifetime of top quarks to be roughly 5×10−25 s,[2] which is about a twentieth of the timescale for strong interactions, and therefore that they do not form hadrons.
The first omega baryon discovered was the
Ω−
, made of three strange quarks, in 1964.[3] The discovery was a great triumph in the study of quark processes, since it was found only after its existence, mass, and decay products had been predicted in 1961 by the American physicist Murray Gell-Mann and, independently, by the Israeli physicist Yuval Ne'eman. Besides the
Ω−
, a charmed omega particle (
Ω0
c) was discovered in 1985, in which a strange quark is replaced by a charm quark. The
Ω−
decays only via the weak interaction and has therefore a relatively long lifetime.[4] Spin (J) and parity (P) values for unobserved baryons are predicted by the quark model.[5]
Since omega baryons do not have any up or down quarks, they all have isospin 0.
Omega baryons
Particle | Symbol | Quark content |
Rest mass (MeV/c2) |
JP | Q (e) |
S | C | B' | Mean lifetime (s) |
Decays to |
---|---|---|---|---|---|---|---|---|---|---|
Omega[6] | Ω− |
s s s |
1672.45±0.29 | 3/2+ | −1 | −3 | 0 | 0 | (8.21±0.11)×10−11 | Λ0 + K− or Ξ0 + π− or Ξ− + π0 |
Charmed omega[7] | Ω0 c |
s s c |
2697.5±2.6 | 1/2+ | 0 | −2 | +1 | 0 | (268±24)×10−15 | See Ω0 c Decay Modes |
Bottom omega[8] | Ω− b |
s s b |
6054.4±6.8 | 1/2+ | −1 | −2 | 0 | −1 | (1.13±0.53)×10−12 | Ω− + J/ψ (seen) |
Double charmed omega† | Ω+ cc |
s c c |
1/2+ | +1 | −1 | +2 | 0 | |||
Charmed bottom omega† | Ω0 cb |
s c b |
1/2+ | 0 | −1 | +1 | −1 | |||
Double bottom omega† | Ω− bb |
s b b |
1/2+ | −1 | −1 | 0 | −2 | |||
Triple charmed omega† | Ω++ ccc |
c c c |
3/2+ | +2 | 0 | +3 | 0 | |||
Double charmed bottom omega† | Ω+ ccb |
c c b |
1/2+ | +1 | 0 | +2 | −1 | |||
Charmed double bottom omega† | Ω0 cbb |
c b b |
1/2+ | 0 | 0 | +1 | −2 | |||
Triple bottom omega† | Ω− bbb |
b b b |
3/2+ | −1 | 0 | 0 | −3 | |||
† Particle (or quantity, i.e. spin) has neither been observed nor indicated.
Recent discoveries
The
Ω−
b particle is a "doubly strange" baryon containing two strange quarks and a bottom quark. A discovery of this particle was first claimed in September 2008 by physicists working on the DØ experiment at the Tevatron facility of the Fermi National Accelerator Laboratory.[9][10] However, the reported mass of 6165±16 MeV/c2 was significantly higher than expected in the quark model. The apparent discrepancy from the Standard Model has since been dubbed the "
Ω
b puzzle". In May 2009, the CDF collaboration made public their results on the search for the
Ω−
b based on analysis of a data sample roughly four times the size of the one used by the DØ experiment.[8] CDF measured the mass to be 6054.4±6.8 MeV/c2, which was in excellent agreement with the Standard Model prediction. No signal has been observed at the DØ reported value. The two results differ by 111±18 MeV/c2, which is equivalent to 6.2 standard deviations and are therefore inconsistent. Excellent agreement between the CDF measured mass and theoretical expectations is a strong indication that the particle discovered by CDF is indeed the
Ω−
b. In February 2013 the LHCb collaboration published a measurement of the
Ω−
b mass that is consistent with, but more precise than, the CDF result.[11]
In March 2017, the LHCb collaboration announced the observation of five new narrow
Ω0
c states decaying to
Ξ+
c
K−
, where the
Ξ+
c was reconstructed in the decay mode
p
K−
π+
.[12][13] The states are named
Ω
c(3000)0,
Ω
c(3050)0,
Ω
c(3066)0,
Ω
c(3090)0 and
Ω
c(3119)0. Their masses and widths were reported, but their quantum numbers could not be determined due to the large background present in the sample.
See also
References
- ↑ Particle Data Group. "2010 Review of Particle Physics – Naming scheme for hadrons" (PDF). Retrieved 26 December 2011.
- ↑ A. Quadt (2006). "Top quark physics at hadron colliders". European Physical Journal C. 48 (3): 835–1000. Bibcode:2006EPJC...48..835Q. doi:10.1140/epjc/s2006-02631-6. S2CID 121887478.
- ↑ V. E. Barnes; et al. (1964). "Observation of a Hyperon with Strangeness Minus Three" (PDF). Physical Review Letters. 12 (8): 204. Bibcode:1964PhRvL..12..204B. doi:10.1103/PhysRevLett.12.204. OSTI 12491965.
- ↑ R. Nave. "The Omega baryon". HyperPhysics. Retrieved 26 November 2009.
- ↑ Körner, J.G; Krämer, M; Pirjol, D (1 January 1994). "Heavy baryons". Progress in Particle and Nuclear Physics. 33: 787–868. arXiv:hep-ph/9406359. Bibcode:1994PrPNP..33..787K. doi:10.1016/0146-6410(94)90053-1. S2CID 118931787.
- ↑ Particle Data Group. "2006 Review of Particle Physics –
Ω−
" (PDF). Retrieved 20 April 2008. - ↑ Particle Data Group. "
Ω0
c listing –
Ω0
c" (PDF). Retrieved 13 August 2018. - 1 2
T. Aaltonen et al. (CDF Collaboration) (2009). "Observation of the
Ω−
b and Measurement of the Properties of the
Ξ−
b and
Ω−
b". Physical Review D. 80 (7): 072003. arXiv:0905.3123. Bibcode:2009PhRvD..80g2003A. doi:10.1103/PhysRevD.80.072003. hdl:1721.1/52706. S2CID 54189461. - ↑ "Fermilab physicists discover "doubly strange" particle". Fermilab. 3 September 2008. Retrieved 4 September 2008.
- ↑
V. Abazov et al. (DØ Collaboration) (2008). "Observation of the doubly strange b baryon
Ω−
b". Physical Review Letters. 101 (23): 232002. arXiv:0808.4142. Bibcode:2008PhRvL.101w2002A. doi:10.1103/PhysRevLett.101.232002. PMID 19113541. S2CID 30481085. - ↑ R. Aaij et al. (LHCb collaboration) (2013). "Measurement of the
Λ0
b,
Ξ−
b and
Ω−
b baryon masses". Physical Review Letters. 110 (18): 182001. arXiv:1302.1072. Bibcode:2013PhRvL.110r2001A. doi:10.1103/PhysRevLett.110.182001. PMID 23683191. S2CID 22966047. - ↑ "LHCb observes an exceptionally large group of particles". CERN.
- ↑ R. Aaij et al. (LHCb collaboration) (2017). "Observation of five new narrow
Ω0
c states decaying to
Ξ+
c
K−
". Physical Review Letters. 11801 (2017): 182001. arXiv:1703.04639. Bibcode:2017PhRvL.118r2001A. doi:10.1103/PhysRevLett.118.182001. PMID 28524669. S2CID 610517.