This is a list of quasiparticles.

Quasiparticles
Quasiparticle Signification Underlying particles
Anyon A type of quasiparticle that occurs only in two-dimensional systems, with properties much less restricted than fermions and bosons.
Bion A bound state of solitons, named for Born–Infeld model soliton
Bipolaron A bound pair of two polarons polaron (electron, phonon)
Bogoliubon Broken Cooper pair electron, hole
Configuron[1] An elementary configurational excitation in an amorphous material which involves breaking of a chemical bond
Dislon A localized collective excitation associated with a dislocation in crystalline solids.[2] It emerges from the quantization of the lattice displacement field of a classical dislocation
Doublons Paired electrons in the same lattice site[3][4][5] electrons
Dropleton The first known quasiparticle that behaves like a liquid[6]
Electron quasiparticle An electron as affected by the other forces and interactions in the solid electron
Electron hole (hole) A lack of electron in a valence band electron, cation
Exciton A bound state of an electron and a hole (See also: biexciton) electron, hole
Ferron A quasiparticle that carries heat and polarization, akin to phonon and magnons.[7][8]
Fracton A collective quantized vibration on a substrate with a fractal structure.
Fracton (subdimensional particle) An emergent quasiparticle excitation that is immobile when in isolation.
Holon (chargon) A quasi-particle resulting from electron spin-charge separation
Leviton A collective excitation of a single electron within a metal
Magnon A coherent excitation of electron spins in a material
Majorana fermion A quasiparticle equal to its own antiparticle, emerging as a midgap state in certain superconductors
Nematicon A soliton in nematic liquid-crystal media
Orbiton[9] A quasiparticle resulting from electron spin–orbital separation
Oscillon A soliton-like single wave in vibrating media
Phason Vibrational modes in a quasicrystal associated with atomic rearrangements
Phoniton A theoretical quasiparticle which is a hybridization of a localized, long-living phonon and a matter excitation[10]
Phonon Vibrational modes in a crystal lattice associated with atomic shifts
Plasmaron A quasiparticle emerging from the coupling between a plasmon and a hole
Plasmon A coherent excitation of a plasma
Polaron A moving charged quasiparticle that is surrounded by ions in a material electron, phonon
Polariton A mixture of photon with other quasiparticles photon, optical phonon
Roton Elementary excitation in superfluid helium-4
Soliton A self-reinforcing solitary excitation wave
Spinon A quasiparticle produced as a result of electron spin–charge separation that can form both quantum spin liquid and strongly correlated quantum spin liquid
Trion A coherent excitation of three quasiparticles (two holes and one electron or two electrons and one hole)
Triplon A quasiparticle formed from electrons with triplet state pairing[11][12] triplet state electrons
Wrinklon A localized excitation corresponding to wrinkles in a constrained two dimensional system[13][14]

References

  1. Angell, C.A.; Rao, K.J. (1972). "Configurational excitations in condensed matter, and "bond lattice" model for the liquid-glass transition". J. Chem. Phys. 57 (1): 470–481. Bibcode:1972JChPh..57..470A. doi:10.1063/1.1677987.
  2. M. Li, Y. Tsurimaki, Q. Meng, N. Andrejevic, Y. Zhu, G. D. Mahan, and G. Chen, "Theory of electron-phonon-dislon interacting system – toward a quantized theory of dislocations", New J. Phys. (2017) http://iopscience.iop.org/article/10.1088/1367-2630/aaa383/meta
  3. Bergan, Brad (2021-06-29). "Physicist Just Discovered a New Quasiparticle". interestingengineering.com. Retrieved 2024-01-10.
  4. Besedin, Ilya S.; Gorlach, Maxim A.; Abramov, Nikolay N.; Tsitsilin, Ivan; Moskalenko, Ilya N.; Dobronosova, Alina A.; Moskalev, Dmitry O.; Matanin, Alexey R.; Smirnov, Nikita S.; Rodionov, Ilya A.; Poddubny, Alexander N.; Ustinov, Alexey V. (2021-06-17). "Topological excitations and bound photon pairs in a superconducting quantum metamaterial". Physical Review B. 103 (22). arXiv:2006.12794. doi:10.1103/PhysRevB.103.224520. ISSN 2469-9950.
  5. Azcona, P. Martínez; Downing, C. A. (2021-06-15). "Doublons, topology and interactions in a one-dimensional lattice". Scientific Reports. 11 (1). doi:10.1038/s41598-021-91778-z. ISSN 2045-2322. PMC 8206211. PMID 34131200.
  6. Clara Moskowitz (26 February 2014). "Meet the Dropleton—a "Quantum Droplet" That Acts Like a Liquid". Scientific American. Retrieved 26 February 2014.
  7. Wooten, Brandi L.; Iguchi, Ryo; Tang, Ping; Kang, Joon Sang; Uchida, Ken-ichi; Bauer, Gerrit; Heremans, Joseph P. (2023-02-03). "Electric field–dependent phonon spectrum and heat conduction in ferroelectrics". Science Advances. 9 (5): eadd7194. doi:10.1126/sciadv.add7194. ISSN 2375-2548. PMC 9891688. PMID 36724270.
  8. Gasparini, Allison (2023-02-17). "Researchers Spot a Ferron". Physics. 16: 28. doi:10.1103/Physics.16.28. S2CID 257618626.
  9. J. Schlappa; K. Wohlfeld; K. J. Zhou; M. Mourigal; M. W. Haverkort; V. N. Strocov; L. Hozoi; C. Monney; S. Nishimoto; S. Singh; A. Revcolevschi; J.-S. Caux; L. Patthey; H. M. Rønnow; J. van den Brink; T. Schmitt (2012-04-18). "Spin–orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3". Nature. 485 (7396): 82–5. arXiv:1205.1954. Bibcode:2012Natur.485...82S. doi:10.1038/nature10974. PMID 22522933. S2CID 43990784.
  10. "Introducing the Phoniton: a tool for controlling sound at the quantum level". University of Maryland Department of Physics. Retrieved 26 Feb 2014.
  11. Drost, Robert; Kezilebieke, Shawulienu; Lado, Jose L.; Liljeroth, Peter (2023-08-22). "Real-Space Imaging of Triplon Excitations in Engineered Quantum Magnets" (PDF). Physical Review Letters. 131 (8): 086701. doi:10.1103/PhysRevLett.131.086701. PMID 37683177. S2CID 256194268.
  12. McRae, Mike (2023-08-25). "Waves of Entanglement Seen Rippling Through a Quantum Magnet For The First Time". ScienceAlert. Retrieved 2023-08-28.
  13. Johnson, Hamish. "Introducing the 'wrinklon'". Physics World. Retrieved 26 Feb 2014.
  14. Meng, Lan; Su, Ying; Geng, Dechao; Yu, Gui; Liu, Yunqi; Dou, Rui-Fen; Nie, Jia-Cai; He, Lin (2013). "Hierarchy of graphene wrinkles induced by thermal strain engineering". Applied Physics Letters. 103 (25): 251610. arXiv:1306.0171. Bibcode:2013ApPhL.103y1610M. doi:10.1063/1.4857115. S2CID 119234537.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.