This is a list of quasiparticles.
Quasiparticle | Signification | Underlying particles |
---|---|---|
Anyon | A type of quasiparticle that occurs only in two-dimensional systems, with properties much less restricted than fermions and bosons. | |
Bion | A bound state of solitons, named for Born–Infeld model | soliton |
Bipolaron | A bound pair of two polarons | polaron (electron, phonon) |
Bogoliubon | Broken Cooper pair | electron, hole |
Configuron[1] | An elementary configurational excitation in an amorphous material which involves breaking of a chemical bond | |
Dislon | A localized collective excitation associated with a dislocation in crystalline solids.[2] It emerges from the quantization of the lattice displacement field of a classical dislocation | |
Doublons | Paired electrons in the same lattice site[3][4][5] | electrons |
Dropleton | The first known quasiparticle that behaves like a liquid[6] | |
Electron quasiparticle | An electron as affected by the other forces and interactions in the solid | electron |
Electron hole (hole) | A lack of electron in a valence band | electron, cation |
Exciton | A bound state of an electron and a hole (See also: biexciton) | electron, hole |
Ferron | A quasiparticle that carries heat and polarization, akin to phonon and magnons.[7][8] | |
Fracton | A collective quantized vibration on a substrate with a fractal structure. | |
Fracton (subdimensional particle) | An emergent quasiparticle excitation that is immobile when in isolation. | |
Holon (chargon) | A quasi-particle resulting from electron spin-charge separation | |
Leviton | A collective excitation of a single electron within a metal | |
Magnon | A coherent excitation of electron spins in a material | |
Majorana fermion | A quasiparticle equal to its own antiparticle, emerging as a midgap state in certain superconductors | |
Nematicon | A soliton in nematic liquid-crystal media | |
Orbiton[9] | A quasiparticle resulting from electron spin–orbital separation | |
Oscillon | A soliton-like single wave in vibrating media | |
Phason | Vibrational modes in a quasicrystal associated with atomic rearrangements | |
Phoniton | A theoretical quasiparticle which is a hybridization of a localized, long-living phonon and a matter excitation[10] | |
Phonon | Vibrational modes in a crystal lattice associated with atomic shifts | |
Plasmaron | A quasiparticle emerging from the coupling between a plasmon and a hole | |
Plasmon | A coherent excitation of a plasma | |
Polaron | A moving charged quasiparticle that is surrounded by ions in a material | electron, phonon |
Polariton | A mixture of photon with other quasiparticles | photon, optical phonon |
Roton | Elementary excitation in superfluid helium-4 | |
Soliton | A self-reinforcing solitary excitation wave | |
Spinon | A quasiparticle produced as a result of electron spin–charge separation that can form both quantum spin liquid and strongly correlated quantum spin liquid | |
Trion | A coherent excitation of three quasiparticles (two holes and one electron or two electrons and one hole) | |
Triplon | A quasiparticle formed from electrons with triplet state pairing[11][12] | triplet state electrons |
Wrinklon | A localized excitation corresponding to wrinkles in a constrained two dimensional system[13][14] |
References
- ↑ Angell, C.A.; Rao, K.J. (1972). "Configurational excitations in condensed matter, and "bond lattice" model for the liquid-glass transition". J. Chem. Phys. 57 (1): 470–481. Bibcode:1972JChPh..57..470A. doi:10.1063/1.1677987.
- ↑ M. Li, Y. Tsurimaki, Q. Meng, N. Andrejevic, Y. Zhu, G. D. Mahan, and G. Chen, "Theory of electron-phonon-dislon interacting system – toward a quantized theory of dislocations", New J. Phys. (2017) http://iopscience.iop.org/article/10.1088/1367-2630/aaa383/meta
- ↑ Bergan, Brad (2021-06-29). "Physicist Just Discovered a New Quasiparticle". interestingengineering.com. Retrieved 2024-01-10.
- ↑ Besedin, Ilya S.; Gorlach, Maxim A.; Abramov, Nikolay N.; Tsitsilin, Ivan; Moskalenko, Ilya N.; Dobronosova, Alina A.; Moskalev, Dmitry O.; Matanin, Alexey R.; Smirnov, Nikita S.; Rodionov, Ilya A.; Poddubny, Alexander N.; Ustinov, Alexey V. (2021-06-17). "Topological excitations and bound photon pairs in a superconducting quantum metamaterial". Physical Review B. 103 (22). arXiv:2006.12794. doi:10.1103/PhysRevB.103.224520. ISSN 2469-9950.
- ↑ Azcona, P. Martínez; Downing, C. A. (2021-06-15). "Doublons, topology and interactions in a one-dimensional lattice". Scientific Reports. 11 (1). doi:10.1038/s41598-021-91778-z. ISSN 2045-2322. PMC 8206211. PMID 34131200.
- ↑ Clara Moskowitz (26 February 2014). "Meet the Dropleton—a "Quantum Droplet" That Acts Like a Liquid". Scientific American. Retrieved 26 February 2014.
- ↑ Wooten, Brandi L.; Iguchi, Ryo; Tang, Ping; Kang, Joon Sang; Uchida, Ken-ichi; Bauer, Gerrit; Heremans, Joseph P. (2023-02-03). "Electric field–dependent phonon spectrum and heat conduction in ferroelectrics". Science Advances. 9 (5): eadd7194. doi:10.1126/sciadv.add7194. ISSN 2375-2548. PMC 9891688. PMID 36724270.
- ↑ Gasparini, Allison (2023-02-17). "Researchers Spot a Ferron". Physics. 16: 28. doi:10.1103/Physics.16.28. S2CID 257618626.
- ↑ J. Schlappa; K. Wohlfeld; K. J. Zhou; M. Mourigal; M. W. Haverkort; V. N. Strocov; L. Hozoi; C. Monney; S. Nishimoto; S. Singh; A. Revcolevschi; J.-S. Caux; L. Patthey; H. M. Rønnow; J. van den Brink; T. Schmitt (2012-04-18). "Spin–orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3". Nature. 485 (7396): 82–5. arXiv:1205.1954. Bibcode:2012Natur.485...82S. doi:10.1038/nature10974. PMID 22522933. S2CID 43990784.
- ↑ "Introducing the Phoniton: a tool for controlling sound at the quantum level". University of Maryland Department of Physics. Retrieved 26 Feb 2014.
- ↑ Drost, Robert; Kezilebieke, Shawulienu; Lado, Jose L.; Liljeroth, Peter (2023-08-22). "Real-Space Imaging of Triplon Excitations in Engineered Quantum Magnets" (PDF). Physical Review Letters. 131 (8): 086701. doi:10.1103/PhysRevLett.131.086701. PMID 37683177. S2CID 256194268.
- ↑ McRae, Mike (2023-08-25). "Waves of Entanglement Seen Rippling Through a Quantum Magnet For The First Time". ScienceAlert. Retrieved 2023-08-28.
- ↑ Johnson, Hamish. "Introducing the 'wrinklon'". Physics World. Retrieved 26 Feb 2014.
- ↑ Meng, Lan; Su, Ying; Geng, Dechao; Yu, Gui; Liu, Yunqi; Dou, Rui-Fen; Nie, Jia-Cai; He, Lin (2013). "Hierarchy of graphene wrinkles induced by thermal strain engineering". Applied Physics Letters. 103 (25): 251610. arXiv:1306.0171. Bibcode:2013ApPhL.103y1610M. doi:10.1063/1.4857115. S2CID 119234537.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.