In set theory, a branch of mathematics, the condensation lemma is a result about sets in the constructible universe.
It states that if X is a transitive set and is an elementary submodel of some level of the constructible hierarchy Lα, that is, , then in fact there is some ordinal such that .
More can be said: If X is not transitive, then its transitive collapse is equal to some , and the hypothesis of elementarity can be weakened to elementarity only for formulas which are in the Lévy hierarchy.[1] Also, the assumption that X be transitive automatically holds when .
The lemma was formulated and proved by Kurt Gödel in his proof that the axiom of constructibility implies GCH.
References
- Devlin, Keith (1984). Constructibility. Springer. ISBN 3-540-13258-9. (theorem II.5.2 and lemma II.5.10)
Inline citations
- ↑ R. B. Jensen, The Fine Structure of the Constructible Hierarchy (1972), p.246. Accessed 13 January 2023.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.