Cyclodiphosphazanes are saturated four membered P2N2 ring systems and one of the major classes of cyclic phosphazene compounds.[1] Bis(chloro)cyclodiphosphazanes, (cis-[ClP(μ-NR)]2) are important starting compounds for synthesizing a variety of cyclodiphosphazane derivatives by nucleophilic substitution reactions; are prepared by reaction of phosphorus trichloride (PCl3) with a primary amine (RNH2) or amine hydrochlorides (RNH3Cl).[2]

Organic substituents on nitrogen play an important role in formation of cyclic phosphazane compounds.[3] The cyclic tetramers and trimer are formed with methyl and ethyl substituents on nitrogen, whereas formation of cyclic dimers (cis-[ClP(μ-NR)]2) have been observed exclusively with more sterically demanding primary amines such as tert-butylamine and aniline.[4]

Coordination Chemistry

Cyclodiphosphazanes are excellent ligand systems for metallosupramolecular chemistry.[5] The cis-oriented lone pair on phosphorus in cyclodiphosphazane are projected away from each other, so chelation to metal center is not possible. This bridging coordination of cyclodiphosphazane allows formation of metallomacrocycles containing four rhodium and gold centers and metallopolymers CuX, AgX.[6]

Chiral cyclodiphosphazanes have found use as ligands in asymmetric catalysis. Gade et al. employed them in enantioselective transition-metal mediated catalysis,[7] while Goldfuss et al. employed di-amino substituted chiral variants in hydrogen bonding catalysis.[8]

Cyclodiphosphazanes have also been found to have a high ability to bind anions via hydrogen bonding - specifically halides - in both their monomeric and macrocyclic forms. They are competitive to or better than comparable bifurcated anion binding structural motifs such as (thio)urea and squaramide.[9][10][11][12][13]

References

  1. Yang, Yun-Fang; Cheng, Gui-Juan; Zhu, Jun; Zhang, Xinhao; Inoue, Shigeyoshi; Wu, Yun-Dong (2012-06-11). "Silicon-containing formal 4π-electron four-membered ring systems: antiaromatic, aromatic, or nonaromatic?". Chemistry: A European Journal. 18 (24): 7516–7524. doi:10.1002/chem.201103443. ISSN 1521-3765. PMID 22532432.
  2. Chandrasekaran, P.; Mague, Joel T.; Balakrishna, Maravanji S. (March 30, 2011). "Synthesis and Derivatization of the Bis(amido)‐λ 3 ‐cyclodiphosphazanes cis ‐[R′(H)NP(μ‐NR)] 2 , Including a Rare Example, trans ‐[ t Bu(H)N(Se)P(μ‐NCy)] 2 , Showing Intermolecular Se···H–O Hydrogen Bonding". European Journal of Inorganic Chemistry. 2011 (14): 2264–2272. doi:10.1002/ejic.201001348. ISSN 1434-1948.
  3. Jezuita, Anna; Ejsmont, Krzysztof; Szatylowicz, Halina (2021-02-01). "Substituent effects of nitro group in cyclic compounds". Structural Chemistry. 32 (1): 179–203. doi:10.1007/s11224-020-01612-x. ISSN 1572-9001.
  4. Balakrishna, Maravanji S.; Eisler, Dana J.; Chivers, Tristram (2007). "Chemistry of pnictogen(III)–nitrogen ring systems". Chem. Soc. Rev. 36 (4): 650–664. doi:10.1039/b514861h. PMID 17387412.
  5. Balakrishna, Maravanji S. (2016-08-02). "Cyclodiphosphazanes: options are endless". Dalton Transactions. 45 (31): 12252–12282. doi:10.1039/c6dt01121g. ISSN 1477-9234. PMID 27430043.
  6. Ananthnag, Guddekoppa S.; Kuntavalli, Seema; Mague, Joel T.; Balakrishna, Maravanji S. (2012-05-07). "Resorcinol Based Acyclic Dimeric and Cyclic Di- and Tetrameric Cyclodiphosphazanes: Synthesis, Structural Studies, and Transition Metal Complexes". Inorganic Chemistry. 51 (10): 5919–5930. doi:10.1021/ic300541n. PMID 22564192.
  7. Roth, Torsten; Wadepohl, Hubert; Wright, Dominic S.; Gade, Lutz H. (2013-08-28). "Chiral Ditopic Cyclophosphazane (CycloP) Ligands: Synthesis, Coordination Chemistry, and Application in Asymmetric Catalysis". Chemistry - A European Journal. 19 (41): 13823–13837. doi:10.1002/chem.201302327. PMID 24038171.
  8. Klare, Helge; Neudörfl, Jörg M.; Goldfuss, Bernd (2014-01-21). "New hydrogen-bonding organocatalysts: Chiral cyclophosphazanes and phosphorus amides as catalysts for asymmetric Michael additions". Beilstein Journal of Organic Chemistry. 10 (1): 224–236. doi:10.3762/bjoc.10.18. PMC 3944119. PMID 24605142.
  9. Klare, Helge; Hanft, Sebastian; Neudörfl, Jörg M.; Schlörer, Nils E.; Griesbeck, Axel; Goldfuss, Bernd (2014-09-08). "Anion Recognition with Hydrogen-Bonding Cyclodiphosphazanes". Chemistry – A European Journal. 20 (37): 11847–11855. doi:10.1002/chem.201403013. ISSN 0947-6539. PMID 25079663.
  10. Wolf, Florian F.; Neudörfl, Jörg-M.; Goldfuss, Bernd (2018-03-26). "Hydrogen-bonding cyclodiphosphazanes: superior effects of 3,5-(CF3)2-substitution in anion-recognition and counter-ion catalysis". New Journal of Chemistry. 42 (7): 4854–4870. doi:10.1039/C7NJ04660J. ISSN 1369-9261.
  11. Plajer, Alex J.; Zhu, Jinbo; Proehm, Patrick; Bond, Andrew D.; Keyser, Ulrich F.; Wright, Dominic S. (2019-06-05). "Tailoring the Binding Properties of Phosphazane Anion Receptors and Transporters". Journal of the American Chemical Society. 141 (22): 8807–8815. doi:10.1021/jacs.9b00504. ISSN 0002-7863. PMID 31079456. S2CID 153304971.
  12. Plajer, Alex J.; Zhu, Jinbo; Pröhm, Patrick; Rizzuto, Felix J.; Keyser, Ulrich F.; Wright, Dominic S. (2020-01-15). "Conformational Control in Main Group Phosphazane Anion Receptors and Transporters". Journal of the American Chemical Society. 142 (2): 1029–1037. doi:10.1021/jacs.9b11347. ISSN 0002-7863. PMID 31877039. S2CID 209490378.
  13. Shi, Xiaoyan; León, Felix; Sim, Ying; Quek, Shina; Hum, Gavin; Khoo, Yi Xin Joycelyn; Ng, Zi Xuan; Par, Mian Yang; Ong, How Chee; Singh, Varun K.; Ganguly, Rakesh (2020). "N-Bridged Acyclic Trimeric Poly-Cyclodiphosphazanes: Highly Tuneable Cyclodiphosphazane Building Blocks". Angewandte Chemie International Edition. 59 (49): 22100–22108. doi:10.1002/anie.202008214. ISSN 1521-3773. PMID 32696527.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.