David Applegate
Academic background
EducationUniversity of Dayton (BS)
Carnegie Mellon University (PhD)
Doctoral advisorRavindran Kannan
Academic work
DisciplineComputer science
Sub-disciplineConvex volume approximation
InstitutionsRice University
AT&T Labs
Google

David L. Applegate is an American computer scientist known for his research on the traveling salesperson problem.

Education

Applegate graduated from the University of Dayton in 1984,[1] and completed his doctorate in 1991 from Carnegie Mellon University, with a dissertation on convex volume approximation supervised by Ravindran Kannan.[2]

Career

Applegate worked on the faculty at Rice University and at AT&T Labs before joining Google in New York City in 2016.[1] His work on the Concorde TSP Solver, described in a 1998 paper, won the Beale–Orchard-Hays Prize of the Mathematical Optimization Society,[3][1][ICM] and his book The traveling salesman problem with the same authors won the Frederick W. Lanchester Prize in 2007.[4][TSP] He and Edith Cohen won the IEEE Communications Society's William R. Bennett Prize for a 2006 research paper on robust network routing.[5][ToN] Another of his papers, on arithmetic without carrying, won the 2013 George Pólya Award.[6][CMJ] In 2013, he was named an AT&T Fellow.[1]

With Guy Jacobsen and Daniel Sleator, Applegate was the first to computerize the analysis of the pencil-and-paper game, Sprouts.[7][8]

Selected publications

References

  1. 1 2 3 4 "David Applegate", Research at Google, retrieved 2017-08-03
  2. David Applegate at the Mathematics Genealogy Project
  3. Past Winners of the Beale — Orchard-Hays Prize, Mathematical Optimization Society, retrieved 2017-08-03.
  4. 1 2 "David L. Applegate", Recognizing Excellence: Award Recipients, Institute for Operations Research and the Management Sciences, retrieved 2017-08-03
  5. 1 2 The IEEE Communications Society William R. Bennett Prize, retrieved 2017-08-03
  6. 1 2 3 Applegate, David; Lebrun, Marc; Sloane, N. J. A. (2010), "Carryless Arithmetic Mod 10", George Pólya Awards, Mathematical Association of America, arXiv:1008.4633, retrieved 2017-08-03
  7. Gardner, Martin (2001), The Colossal Book of Mathematics: Classic Puzzles, Paradoxes, and Problems : Number Theory, Algebra, Geometry, Probability, Topology, Game Theory, Infinity, and Other Topics of Recreational Mathematics, W. W. Norton & Company, p. 491, ISBN 9780393020236
  8. Peterson, Ivars (2002), Mathematical Treks: From Surreal Numbers to Magic Circles, MAA Spectrum, Mathematical Association of America, p. 71, ISBN 9780883855379
  9. Lenstra, Jan Karel; Shmoys, David (2009), "The traveling salesman problem: a computational study", SIAM Review, 51 (4): 799–801, MR 2573947
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.