1,1'-Dilithioferrocene
Names
IUPAC name
1,1'-Dilithioferrocene
Identifiers
3D model (JSmol)
  • InChI=1S/2C5H4.Fe.2Li/c2*1-2-4-5-3-1;;;/h2*1-4H;;;/q2*-1;;2*+1
    Key: CWUATGTYNYDRDF-UHFFFAOYSA-N
  • [Li+].[Li+].[CH]1[CH][CH][C-][CH]1.[CH]1[CH][CH][C-][CH]1.[Fe]
Properties
C10H8FeLi2
Molar mass 197.90 g·mol−1
Appearance orange solid
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
pyrophoric
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

1,1'-Dilithioferrocene is the organoiron compound with the formula Fe(C5H4Li)2. It is exclusively generated and isolated as a solvate, using either ether or tertiary amine ligands bound to the lithium centers. Regardless of the solvate, dilithioferrocene is used commonly to prepare derivatives of ferrocene.

Synthesis and reactions

Treatment of ferrocene with butyl lithium gives 1,1'-dilithioferrocene, regardless of the stoichiometry (monolithioferrocene requires special conditions for its preparation). Typically the lithiation reaction is conducted in the presence of tetramethylethylenediamine (tmeda). The adduct [Fe(C5H4Li)2]3(tmeda)2 has been crystallized from such solutions.[1] Recrystallization of this adduct from thf gives [Fe(C5H4Li)2]3(thf)6.[2]

1,1'-Dilithioferrocene reacts with a variety of electrophiles to afford disubstituted derivatives of ferrocene. These electrophiles include S8 (to give 1,1'-ferrocenetrisulfide), chlorophosphines, and chlorosilanes.[3]

Some transformations of dilithioferrocene.

The diphosphine ligand 1,1'-bis(diphenylphosphino)ferrocene (dppf) is prepared by treating dilithioferrocene with chlorodiphenylphosphine.

Monolithioferrocene

The reaction of ferrocene with one equivalent of butyllithium mainly affords dilithioferrocene. Monolithioferrocene can be obtained using tert-butyllithium.[4]

References

  1. Butler, Ian R.; Cullen, William R.; Ni, Jijin; Rettig, Stephen J. (1985). "The Structure of the 3:2 Adduct of 1,1'-Dilithioferrocene with Tetramethylethylenediamine". Organometallics. 4 (12): 2196–2201. doi:10.1021/om00131a023.
  2. Perucha, Alejandro Sánchez; Heilmann-Brohl, Julia; Bolte, Michael; Lerner, Hans-Wolfram; Wagner, Matthias (2008). "Comparison of Doubly Lithiated, Magnesiated, and Zincated Ferrocenes: [Fe(η5-C5H4)2]2Zn2(tmeda)2, the First Example of a [1.1]Ferrocenophane with Bridging First-Row Transition Metal Atoms". Organometallics. 27 (23): 6170–6177. doi:10.1021/om800765a.
  3. Herbert, David E.; Mayer, Ulrich F. J.; Manners, Ian (2007). "Strained Metallocenophanes and Related Organometallic Rings Containing pi-Hydrocarbon Ligands and Transition-Metal Centers". Angew. Chem. Int. Ed. 46 (27): 5060–5081. doi:10.1002/anie.200604409. PMID 17587203.
  4. Rautz, Hermann; Stüger, Harald; Kickelbick, Guido; Pietzsch, Claus (2001). "Synthesis, Structural Characterization and 57Fe-Mössbauer Spectra of Ferrocenylhexasilanes". Journal of Organometallic Chemistry. 627 (2): 167–178. doi:10.1016/S0022-328X(01)00743-4.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.