In probability theory, the dimension doubling theorems are two results about the Hausdorff dimension of an image of a Brownian motion. In their core both statements say, that the dimension of a set under a Brownian motion doubles almost surely.

The first result is due to Henry P. McKean jr and hence called McKean's theorem (1955). The second theorem is a refinement of McKean's result and called Kaufman's theorem (1969) since it was proven by Robert Kaufman.[1][2]

Dimension doubling theorems

For a -dimensional Brownian motion and a set we define the image of under , i.e.

McKean's theorem

Let be a Brownian motion in dimension . Let , then

-almost surely.

Kaufman's theorem

Let be a Brownian motion in dimension . Then -almost surley, for any set , we have

Difference of the theorems

The difference of the theorems is the following: in McKean's result the -null sets, where the statement is not true, depends on the choice of . Kaufman's result on the other hand is true for all choices of simultaneously. This means Kaufman's theorem can also be applied to random sets .

Literature

  • Mörters, Peter; Peres, Yuval (2010). Brownian Motion. Cambridge: Cambridge University Press. p. 279.
  • Schilling, René L.; Partzsch, Lothar (2014). Brownian Motion. De Gruyter. p. 169.

References

  1. Kaufman, Robert (1969). "Une propriété métrique du mouvement brownien". C. R. Acad. Sci. Paris. 268: 727–728.
  2. Mörters, Peter; Peres, Yuval (2010). Brownian Motion. Cambridge: Cambridge University Press. p. 279.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.