This is an extended version of the energy density table from the main Energy density page:

Energy densities table
Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency %
Arbitrary Antimatter89,875,517,874depends on density
Deuterium–tritium fusion576,000,000[1]
Uranium-235 fissile isotope144,000,000[1]1,500,000,000
Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor86,000,000
Reactor-grade uranium (3.5% U-235) in light-water reactor3,456,00035%
Pu-238 α-decay2,200,000
Hf-178m2 isomer1,326,00017,649,060
Natural uranium (0.7% U235) in light-water reactor443,00035%
Ta-180m isomer41,340689,964
Metallic hydrogen (recombination energy)216[2]
Specific orbital energy of Low Earth orbit (approximate)33.0
Beryllium + Oxygen23.9[3]
Lithium + Fluorine23.75
Octaazacubane potential explosive22.9[4]
Ammonia (NH3)16.911.5[5]
Hydrogen + Oxygen13.4[6]
Gasoline + Oxygen –> Derived from Gasoline13.3
Dinitroacetylene explosive - computed9.8
Octanitrocubane explosive8.5[7]16.9[8]
Tetranitrotetrahedrane explosive - computed8.3
Heptanitrocubane explosive - computed8.2
Sodium (reacted with chlorine)7.0349
Hexanitrobenzene explosive7[9]
Tetranitrocubane explosive - computed6.95
Ammonal (Al+NH4NO3 oxidizer)6.912.7
Tetranitromethane + hydrazine bipropellant - computed6.6
Nitroglycerin6.38[10]10.2[11]
ANFO-ANNM6.26
battery, Lithium–air6.12
Octogen (HMX)5.7[10]10.8[12]
TNT [Kinney, G.F.; K.J. Graham (1985). Explosive shocks in air. Springer-Verlag. ISBN 978-3-540-15147-0.]4.6106.92
Copper Thermite (Al + CuO as oxidizer)4.1320.9
Thermite (powder Al + Fe2O3 as oxidizer)4.0018.4
Hydrogen peroxide decomposition (as monopropellant)2.73.8
battery, Lithium-ion nanowire2.5495%[13]
battery, Lithium Thionyl Chloride (LiSOCl2)[14]2.5
Water 220.64 bar, 373.8 °C1.9680.708
Kinetic energy penetrator 1.930
battery, Fluoride-ion 1.72.8
battery, Hydrogen closed cycle H fuel cell[15]1.62
Hydrazine decomposition (as monopropellant)1.61.6
Ammonium nitrate decomposition (as monopropellant)1.42.5
Thermal Energy Capacity of Molten Salt198%[16]
Molecular spring approximate1
battery, Sodium–Sulfur0.72[17]1.2385%[18]
battery, Lithium–Manganese[19][20]0.83-1.011.98-2.09
battery, Lithium-ion[21][22]0.46-0.720.83-3.6[23]95%[24]
battery, Lithium–Sulfur[25]1.80[26]1.26
battery, Sodium–Nickel Chloride, High Temperature0.56
battery, Silver-oxide[19]0.471.8
Flywheel0.36-0.5[27][28]
5.56 × 45 mm NATO bullet0.43.2
battery, Nickel–metal hydride (NiMH), low power design as used in consumer batteries[29]0.41.55
battery, Zinc-manganese (alkaline), long life design[19][21]0.4-0.591.15-1.43
Liquid Nitrogen0.349
Water - Enthalpy of Fusion0.3340.334
battery, Zinc Bromine flow (ZnBr)[30]0.27
battery, Nickel metal hydride (NiMH), High Power design as used in cars[31]0.2500.493
battery, Nickel–Cadmium (NiCd)[21]0.141.0880%[24]
battery, Zinc–Carbon[21]0.130.331
battery, Lead–acid[21]0.140.36
battery, Vanadium redox0.090.118870-75%
battery, Vanadium–Bromide redox0.180.25280%–90%[32]
Capacitor Ultracapacitor0.0199[33]0.050
Capacitor Supercapacitor0.0180%–98.5%[34]39%–70%[34]
Superconducting magnetic energy storage0.008[35]>95%
Capacitor0.002[36]
Neodymium magnet0.003[37]
Ferrite magnet0.0003[37]
Spring power (clock spring), torsion spring0.0003[38]0.0006
Storage type Energy density by mass (MJ/kg) Energy density by volume (MJ/L) Peak recovery efficiency % Practical recovery efficiency %

Notes

  1. 1 2 Prelas, Mark (2015). Nuclear-Pumped Lasers. Springer. p. 135. ISBN 9783319198453.
  2. http://iopscience.iop.org/1742-6596/215/1/012194/pdf/1742-6596_215_1_012194.pdf
  3. Cosgrove, Lee A.; Snyder, Paul E. (2002-05-01). "The Heat of Formation of Beryllium Oxide1". Journal of the American Chemical Society. 75 (13): 3102–3103. doi:10.1021/ja01109a018.
  4. Glukhovtsev, Mikhail N.; Jiao, Haijun; Schleyer, Paul von Ragué (1996-05-28). "Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?†". Inorganic Chemistry. 35 (24): 7124–7133. doi:10.1021/ic9606237. PMID 11666896.
  5. Ammonia#Combustion
  6. Miller, Catherine (1 February 2021). "Introduction to Rocket Propulsion" (PDF). Retrieved 9 May 2021.
  7. Wiley Interscience
  8. Octanitrocubane
  9. Wiley Interscience
  10. 1 2 "Chemical Explosives". Fas.org. 2008-05-30. Retrieved 2010-05-07.
  11. Nitroglycerin
  12. HMX
  13. "Nanowire battery can hold 10 times the charge of existing lithium-ion battery". News-service.stanford.edu. 2007-12-18. Retrieved 2010-05-07.
  14. "Lithium Thionyl Chloride Batteries". Nexergy. Archived from the original on 2009-02-04. Retrieved 2010-05-07.
  15. "The Unitized Regenerative Fuel Cell". Llnl.gov. 1994-12-01. Archived from the original on 2008-09-20. Retrieved 2010-05-07.
  16. "Technology". SolarReserve. Archived from the original on 2008-01-19. Retrieved 2010-05-07.
  17. "New battery could change world, one house at a time". Heraldextra.com. 2009-04-04. Archived from the original on 2015-10-17. Retrieved 2010-05-07.
  18. Kita, A.; Misaki, H.; Nomura, E.; Okada, K. (August 1984). "Energy Citations Database (ECD) - - Document #5960185". Proc., Intersoc. Energy Convers. Eng. Conf.; (United States). Osti.gov. 2. OSTI 5960185.
  19. 1 2 3 "ProCell Lithium battery chemistry". Duracell. Archived from the original on 2011-07-10. Retrieved 2009-04-21.
  20. "Properties of non-rechargeable lithium batteries". corrosion-doctors.org. Retrieved 2009-04-21.
  21. 1 2 3 4 5 "Battery energy storage in various battery types". AllAboutBatteries.com. Archived from the original on 2009-04-28. Retrieved 2009-04-21.
  22. A typically available lithium-ion cell with an Energy Density of 201 wh/kg "Li-Ion 18650 Cylindrical Cell 3.6V 2600mAh - Highest Energy Density Cell in Market (LC-18650H4) - LC-18650H4". Archived from the original on 2008-12-01. Retrieved 2012-12-14.
  23. "Lithium Batteries". Archived from the original on 2011-08-08. Retrieved 2010-07-02.
  24. 1 2 Justin Lemire-Elmore (2004-04-13). "The Energy Cost of Electric and Human-Powered Bicycles" (PDF). p. 7. Archived from the original (PDF) on 2012-09-13. Retrieved 2009-02-26. Table 3: Input and Output Energy from Batteries
  25. "Lithium Sulfur Rechargeable Battery Data Sheet" (PDF). Sion Power, Inc. 2005-09-28. Archived from the original (PDF) on 2008-08-28.
  26. Kolosnitsyn, V.S.; E.V. Karaseva (2008). "Lithium-sulfur batteries: Problems and solutions". Russian Journal of Electrochemistry. 44 (5): 506–509. doi:10.1134/s1023193508050029. S2CID 97022927.
  27. "Storage Technology Report, ST6 Flywheel" (PDF). Archived from the original (PDF) on 2013-01-14. Retrieved 2012-12-14.
  28. "Next-gen Of Flywheel Energy Storage". Product Design & Development. Archived from the original on 2010-07-10. Retrieved 2009-05-21.
  29. "Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008" (PDF). Archived from the original (PDF) on 2010-01-04. Retrieved 2012-12-14.
  30. "ZBB Energy Corp". Archived from the original on 2007-10-15. 75 to 85 watt-hours per kilogram
  31. High Energy Metal Hydride Battery Archived 2009-09-30 at the Wayback Machine
  32. "Microsoft Word - V-FUEL COMPANY AND TECHNOLOGY SHEET 2008.doc" (PDF). Archived from the original (PDF) on 2010-11-22. Retrieved 2010-05-07.
  33. "Maxwell Technologies: Ultracapacitors - BCAP3000". Maxwell.com. Retrieved 2010-05-07.
  34. 1 2 "Archived copy" (PDF). Archived from the original (PDF) on 2012-07-22. Retrieved 2012-12-14.{{cite web}}: CS1 maint: archived copy as title (link)
  35. Archived February 16, 2010, at the Wayback Machine
  36. "Department of Computing". Archived from the original on 2006-10-06. Retrieved 2012-12-14.
  37. 1 2 "Archived copy" (PDF). Archived from the original (PDF) on 2011-05-13. Retrieved 2012-12-14.{{cite web}}: CS1 maint: archived copy as title (link)
  38. "Garage Door Springs". Garagedoor.org. Retrieved 2010-05-07.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.