In mathematics, the Faxén integral (also named Faxén function) is the following integral[1]
The integral is named after the Swedish physicist Olov Hilding Faxén, who published it in 1921 in his PhD thesis.[2]
n-dimensional Faxén integral
More generally one defines the -dimensional Faxén integral as[3]
with
- and
for and
The parameter is only for convenience in calculations.
Properties
Let denote the Gamma function, then
For one has the following relationship to the Scorer function
Asymptotics
For we have the following asymptotics[4]
References
- ↑ Olver, Frank W. J. (1997). Asymptotics and Special Functions. A K Peters/CRC Press. p. 332. doi:10.1201/9781439864548.
- ↑ Faxén, Hilding (1921). Einwirkung der Gefässwände auf den Widerstand gegen die Bewegung einer kleinen Kugel in einer zähen Flüssigkeit (PhD). Uppsala University.
- ↑ Paris, Richard Bruce (2010). "Asymptotic expansion of n-dimensional Faxén-type integrals". European Journal of Pure and Applied Mathematics. A K Peters/CRC Press. 3 (6): 1006–1031.
- ↑ Kaminski, David; Paris, Richard B. (1997). "Asymptotics via iterated Mellin–Barnes integrals: Application to the generalised Faxén integral". Methods and applications of analysis. 4: 311–325.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.