Gliese 521
Observation data
Epoch J2000      Equinox J2000
Constellation Canes Venatici
Right ascension 13h 39m 24.10228s[1]
Declination +46° 11 11.3631[1]
Apparent magnitude (V) +10.26[2]
Characteristics
Spectral type M1V[3]
Apparent magnitude (J) 7.05[2]
Apparent magnitude (H) 6.51[2]
Apparent magnitude (K) 6.26[2]
Astrometry
Radial velocity (Rv)−65.72±0.15[1] km/s
Proper motion (μ) RA: −42.332±0.012 mas/yr[1]
Dec.: 389.167±0.014 mas/yr[1]
Parallax (π)74.7985 ± 0.0153 mas[1]
Distance43.605 ± 0.009 ly
(13.369 ± 0.003 pc)
Absolute magnitude (MV)10.243[4]
Details
Mass0.506±0.021 M[2]
0.47±0.05[5] M
Radius0.619±0.030 R[4]
0.47±0.05[5] R
Luminosity0.033+0.008
−0.007
[5] L
Surface gravity (log g)4.79±0.04[5] cgs
Temperature3,493±50[4] K
Metallicity [Fe/H]−0.34 dex[2]
−0.09±0.09[5] dex
Rotation49.5±3.5 d[6]
Rotational velocity (v sin i)0.85[4] km/s
Other designations
BD+46 1889, GJ 521, HIP 66625, SAO 44697, WDS 13394+4611, LTT 13979, TYC 3463-00063-1, 2MASS J13392410+4611114[7]
Database references
SIMBADdata

Gliese 521 is a double star in the northern constellation of Canes Venatici. The system is located at a distance of 43.6 light-years from the Sun based on parallax measurements, but is drawing closer with a radial velocity of −65.6 km/s.[4] It is predicted to come as close as 15.70 light-years from the Sun in 176,900 years.[8] This star is too faint to be visible to the naked eye, having an apparent visual magnitude of +10.26[2] and an absolute magnitude of 10.24.[4]

The primary is an M-type main-sequence star with a stellar classification of M1V.[3] It is only about half the size and mass of the Sun. The star is rotating slowly with a projected rotational velocity of 0.85 km/s[4] and a rotation period of roughly 49.5 days.[6] The star has a lower metal-content compared to the Sun. It is radiating just 3%[5] of the luminosity of the Sun from its photosphere at an effective temperature of 3,493 K.[4]

A faint stellar companion was announced by E. Jódar and associates in 2013. The companion has an angular separation of 521 mas along a position angle of 352.1°±1.4° from the primary. This is equivalent to a projected separation of 7.24±0.14 AU.[9]

Search for planets

According to Marcy & Benitz (1989)[10] detected a possible periodicity of 510 days, inferring the possible presence of a massive planetary object with minimum mass of 12 times that of Jupiter in highly eccentric orbit (e=0.6). So far the planet has not been confirmed. A radial velocity study of the star during the period 2013–2017 initially found a promising signal, but this disappeared when additional data was collected and was instead attributed to magnetic activity.[11]

See also

References

  1. 1 2 3 4 5 6 Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  2. 1 2 3 4 5 6 7 Jenkins, J. S.; et al. (2009). "Rotational Velocities for M Dwarfs". The Astrophysical Journal. 704 (2): 975. arXiv:0908.4092. Bibcode:2009ApJ...704..975J. doi:10.1088/0004-637X/704/2/975. S2CID 119203469.
  3. 1 2 Alonso-Floriano, F. J.; et al. (May 2015). "CARMENES input catalogue of M dwarfs. I. Low-resolution spectroscopy with CAFOS". Astronomy & Astrophysics. 577: 19. arXiv:1502.07580. Bibcode:2015A&A...577A.128A. doi:10.1051/0004-6361/201525803. S2CID 53135130. A128.
  4. 1 2 3 4 5 6 7 8 Houdebine, E. R. (September 2010). "Observation and modelling of main-sequence star chromospheres - XIV. Rotation of dM1 stars". Monthly Notices of the Royal Astronomical Society. 407 (3): 1657–1673. Bibcode:2010MNRAS.407.1657H. doi:10.1111/j.1365-2966.2010.16827.x.
  5. 1 2 3 4 5 6 Maldonado, J.; et al. (February 2017). "HADES RV Programme with HARPS-N at TNG . III. Flux-flux and activity-rotation relationships of early-M dwarfs". Astronomy & Astrophysics. 598: 19. arXiv:1610.05906. Bibcode:2017A&A...598A..27M. doi:10.1051/0004-6361/201629223. A27.
  6. 1 2 Suárez Mascareño, A.; et al. (April 2018). "HADES RV programme with HARPS-N at TNG. VII. Rotation and activity of M-dwarfs from time-series high-resolution spectroscopy of chromospheric indicators". Astronomy & Astrophysics. 612: 17. arXiv:1712.07375. Bibcode:2018A&A...612A..89S. doi:10.1051/0004-6361/201732143. A89.
  7. "BD+46 1889". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2021-11-21.
  8. Bailer-Jones, C. A. L. (January 2018). "The completeness-corrected rate of stellar encounters with the Sun from the first Gaia data release". Astronomy & Astrophysics. 609: 16. arXiv:1708.08595. Bibcode:2018A&A...609A...8B. doi:10.1051/0004-6361/201731453. S2CID 119462489. A8.
  9. Jódar, Esther; et al. (February 2013). "New companions to nearby low-mass stars". Monthly Notices of the Royal Astronomical Society. 429 (1): 859–867. Bibcode:2013MNRAS.429..859J. doi:10.1093/mnras/sts382.
  10. Marcy, Geoffrey W.; Benitz, Karsten J. (September 1989). "A search for substellar companions to low-mass stars". Astrophysical Journal, Part 1. 344 (1): 441–453. Bibcode:1989ApJ...344..441M. doi:10.1086/167812.
  11. Gonzalez Alvarez, Ester (2018). Planets around low-mass stars and stellar activity effects. Università degli Studi di Palermo. hdl:10447/265375. Retrieved 2021-11-21. {{cite book}}: |work= ignored (help)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.