HD 155358
Observation data
Epoch J2000      Equinox J2000
Constellation Hercules
Right ascension 17h 09m 34.61749s[1]
Declination +33° 21 21.0850[1]
Apparent magnitude (V) 7.275±0.005
Characteristics
Spectral type G0[2]
B−V color index 0.523
Astrometry
Radial velocity (Rv)-9.1 km/s
Proper motion (μ) RA: -222.45[1] mas/yr
Dec.: -215.97[1] mas/yr
Parallax (π)22.67 ± 0.48 mas[1]
Distance144 ± 3 ly
(44.1 ± 0.9 pc)
Absolute magnitude (MV)4.12
Details
Mass0.83+0.03
−0.02
[3] M
Radius1.39±0.06 R
Surface gravity (log g)4.05±0.10[2] cgs
Temperature5921±70[2] K
Metallicity21% solar[4]
Age3.3+1.3
−1.6
[3] Gyr
Other designations
BD+33 2840, SAO 65834, Wolf 646, HIP 83949[2]
Database references
SIMBADdata

HD 155358 is a low metallicity yellow dwarf star approximately 43 pc away[5] in the constellation Hercules. This star is known to be orbited by two extrasolar planets.[4]

The star is 11.9 billion years old and has a mass 0.89 times that of the Sun.[3] At the time of the planets' discoveries, it was notable for being the lowest metallicity planet-bearing star known, with an iron-to-hydrogen ratio 21% of the solar value.[4]

Observation

With a visual magnitude of 7.5, this star can not be observed with the unaided eye. Hence it was discovered only after the introduction of the telescope. In 1859 it was catalogued in the Bonner Durchmusterung by the Prussian astronomer F. W. Argelander, who listed an estimated visual magnitude of 7.2.[6] In 1958 it was identified as a star with a relatively large proper motion by the Nizamiah Observatory, Hyderabad.[7] It was suggested in 1979 that this star may lie within 25 parsecs of the Sun. (Up to that time it had never been catalogued as a nearby star.)[8]

Beginning in 2001, this star underwent observation using the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. Changes were observed in the radial velocity motion of the star, indicating a gravitational influence from orbiting objects. Based on the motion of the star over time, astronomers were able to deduce that there are at least two planets in orbit around HD 155358.[9]

Planetary system

On 10 May 2007, astronomers included Cochran from the University of Texas announced two mass type II planets orbiting the same star with the lowest metal content than any planetary host stars. Its discoveries were made by using the Hobby-Eberly Telescope, which used radial velocity to monitor the change of line of sight motion of the star caused by gravity of the planets. These two planets gravitationally interact: modelling the planets assuming their masses are the same as the empirically-determined lower limits, they exchange eccentricities on a timescale of 2700 years, and their arguments of periastron precess on a timescale of 2300 years.[4] HD 155358 b has mass little bit less than Jupiter but more than Saturn. HD 155358 c has 0.8 the mass of Jupiter. HD 155358 b orbits at 0.64 AU while c orbits at 1.02 AU.[10] These two planets are near exact mutual 2:1 mean motion resonance (MMR).[11]

The HD 155358 planetary system[10]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b > 0.85 ± 0.05 MJ 0.64 ± 0.01 194.3 ± 0.3 0.17 ± 0.03
c > 0.82 ± 0.07 MJ 1.02 ± 0.02 391.9 ± 1 0.16 ± 0.1

References

  1. 1 2 3 4 5 van Leeuwen, F.; et al. (2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. S2CID 18759600.
  2. 1 2 3 4 "HD 155358". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2007-09-04.
  3. 1 2 3 Nordstrom B.; Mayor M.; Andersen J.; Holmberg J.; Pont F.; Jorgensen B.R.; Olsen E.H.; Udry S.; Mowlavi N. (2004). "The Geneva-Copenhagen Survey of Solar neighbourhood". Centre de Données astronomiques de Strasbourg. Retrieved 2007-09-04.
  4. 1 2 3 4 Cochran, W.; et al. (2007). "A Planetary System Around HD 155358: The Lowest Metallicity Planet Host Star". The Astrophysical Journal. 665 (2): 1407–1412. arXiv:0705.3228. Bibcode:2007ApJ...665.1407C. doi:10.1086/519555. S2CID 14591389.
  5. Bernkopf J., Fuhrmann K. (March 2008). "On the thick-disc exoplanet host subgiant HD 155358". Monthly Notices of the Royal Astronomical Society. 384 (4): 1563–1566. Bibcode:2008MNRAS.384.1563F. doi:10.1111/j.1365-2966.2007.12806.x.
  6. Argelander, Friedrich W. (1902). Bonner Durchmusterung des noerdlichen Himmels (2nd ed.). Bonn.{{cite book}}: CS1 maint: location missing publisher (link)
  7. Goyal, A. N. (1999). "Stars with large proper motions in the astrographic zones +32° and +33° (List II)". Journal des Observateurs. 41: 121. Bibcode:1958JO.....41..121G.
  8. Halliwell, M. J. (1979). "Possible nearby stars brighter than tenth magnitude". Astrophysical Journal Supplement Series. 41: 173–190. Bibcode:1979ApJS...41..173H. doi:10.1086/190614.
  9. Johnson, Rebecca (May 23, 2007). "Astronomers Discover Multi-Planet System; May Alter Theories of Planet Formation". University of Texas. Retrieved 2007-09-04.
  10. 1 2 Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Wittenmyer, Robert A.; Horner, J.; Brugamyer, Erik J.; Simon, Attila E.; Barnes, Stuart I.; Caldwell, Caroline (April 2012). "The McDonald Observatory Planet Search: New Long-Period Giant Planets, and Two Interacting Jupiters in the HD 155358 System". The Astrophysical Journal. 749 (1): 17. arXiv:1202.0265. Bibcode:2012ApJ...749...39R. doi:10.1088/0004-637X/749/1/39. hdl:2152/34851. S2CID 59273311.
  11. Ari Silburt, Hanno Rein (August 2017). "Resonant structure, formation and stability of the planetary system HD155358". Monthly Notices of the Royal Astronomical Society. 469 (4): 4613–4619. arXiv:1705.04240. doi:10.1093/mnras/stx1193.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.