In mathematics, Hermite transform is an integral transform named after the mathematician Charles Hermite, which uses Hermite polynomials as kernels of the transform. This was first introduced by Lokenath Debnath in 1964.[1][2][3][4]

The Hermite transform of a function is

The inverse Hermite transform is given by

Some Hermite transform pairs

[5]
[6]
[7]
[8]
[9][10]

References

  1. Debnath, L. (1964). "On Hermite transform". Matematički Vesnik. 1 (30): 285–292.
  2. Debnath; Lokenath; Bhatta, Dambaru (2014). Integral transforms and their applications. CRC Press. ISBN 9781482223576.
  3. Debnath, L. (1968). "Some operational properties of Hermite transform". Matematički Vesnik. 5 (43): 29–36.
  4. Dimovski, I. H.; Kalla, S. L. (1988). "Convolution for Hermite transforms". Math. Japonica. 33: 345–351.
  5. McCully, Joseph Courtney; Churchill, Ruel Vance (1953), Hermite and Laguerre integral transforms : preliminary report
  6. Feldheim, Ervin (1938). "Quelques nouvelles relations pour les polynomes d'Hermite". Journal of the London Mathematical Society (in French). s1-13: 22–29. doi:10.1112/jlms/s1-13.1.22.
  7. Bailey, W. N. (1939). "On Hermite polynomials and associated Legendre functions". Journal of the London Mathematical Society. s1-14 (4): 281–286. doi:10.1112/jlms/s1-14.4.281.
  8. Glaeske, Hans-Jürgen (1983). "On a convolution structure of a generalized Hermite transformation" (PDF). Serdica Bulgariacae Mathematicae Publicationes. 9 (2): 223–229.
  9. Erdélyi et al. 1955, p. 194, 10.13 (22).
  10. Mehler, F. G. (1866), "Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung" [On the development of a function of arbitrarily many variables according to higher-order Laplace functions], Journal für die Reine und Angewandte Mathematik (in German) (66): 161–176, ISSN 0075-4102, ERAM 066.1720cj. See p. 174, eq. (18) and p. 173, eq. (13).

Sources

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.