Isotopes of indium (49In)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
111In synth 2.8 d ε 111Cd
113In 4.28% stable
115In 95.7% 4.41×1014 y β 115Sn
Standard atomic weight Ar°(In)
  • 114.818±0.001
  • 114.82±0.01 (abridged)[2][3]

Indium (49In) consists of two primordial nuclides, with the most common (~ 95.7%) nuclide (115In) being measurably though weakly radioactive. Its spin-forbidden decay has a half-life of 4.41×1014 years, much longer than the currently accepted age of the Universe.

The stable isotope 113In is only 4.3% of naturally occurring indium. Among elements with a known stable isotope, only tellurium and rhenium similarly occur with a stable isotope in lower abundance than the long-lived radioactive isotope. Other than 115In, the longest-lived radioisotope is 111In, with a half-life of 2.8047 days. All other radioisotopes have half-lives less than a day. This element also has 47 isomers, the longest-lived being 114m1In, with a half-life of 49.51 days. All other meta-states have half-lives less than a day, most less than an hour, and many measured in milliseconds or less.

Indium-111 is used medically in nuclear imaging, as a radiotracer nuclide tag for gamma camera localization of protein radiopharmaceuticals, such as In-111-labeled octreotide, which binds to receptors on certain endocrine tumors (Octreoscan).[4] Indium-111 is also used in indium white blood cell scans, which use nuclear medical techniques to search for hidden infections.

Several proton-rich isotopes of indium (including indium-99) have been used to measure the mass of the doubly-magic isotope tin-100.[5][6]

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity
[n 8][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion Range of variation
97In 49 48 96.94954(64)# 5# ms 9/2+#
98In 49 49 97.94214(21)# 45(23) ms
[32(+32−11) ms]
β+ 98Cd 0+#
98mIn 0(500)# keV 1.7(8) s
[1.2(+12−4) s]
99In 49 50 98.93422(43)# 3.1(8) s
[3.0(+8-7) s]
β+ 99Cd 9/2+#
99mIn 400(150)# keV 1# s 1/2−#
100In 49 51 99.93111(27) 5.9(2) s β+ (96.1%) 100Cd (6, 7)+
β+, p (3.9%) 99Ag
101In 49 52 100.92634(32)# 15.1(3) s β+ 101Cd 9/2+#
β+, p 100Ag
101mIn 550(100)# keV 10# s 1/2−#
102In 49 53 101.92409(12) 23.3(1) s β+ (99.99%) 102Cd (6+)
β+, p (.00929%) 101Ag
103In 49 54 102.919914(27) 60(1) s β+ 103Cd 9/2+#
103mIn 631.7(1) keV 34(2) s (1/2−)#
104In 49 55 103.91830(9) 1.80(3) min β+ 104Cd 5, 6(+)
104mIn 93.48(10) keV 15.7(5) s IT (80%) 104In (3+)
β+ (20%) 104Cd
105In 49 56 104.914674(19) 5.07(7) min β+ 105Cd 9/2+
105mIn 674.1(3) keV 48(6) s IT 105In (1/2)−
106In 49 57 105.913465(13) 6.2(1) min β+ 106Cd 7+
106mIn 28.6(3) keV 5.2(1) min β+ 106Cd (3+)
107In 49 58 106.910295(12) 32.4(3) min β+ 107Cd 9/2+
107mIn 678.5(3) keV 50.4(6) s IT 107In 1/2−
108In 49 59 107.909698(10) 58.0(12) min β+ 108Cd 7+
108mIn 29.75(5) keV 39.6(7) min β+ 108Cd 2+
109In 49 60 108.907151(6) 4.2(1) h β+ 109Cd 9/2+
109m1In 650.1(3) keV 1.34(7) min IT 109In 1/2−
109m2In 2101.8(2) keV 209(6) ms (19/2+)
110In 49 61 109.907165(13) 4.9(1) h β+ 110Cd 7+
110mIn 62.1(5) keV 69.1(5) min β+ 110Cd 2+
111In[n 9] 49 62 110.905103(5) 2.8047(5) d EC 111Cd 9/2+
111mIn 536.95(6) keV 7.7(2) min IT 111In 1/2−
112In 49 63 111.905532(6) 14.97(10) min β+ (56%) 112Cd 1+
β (44%) 112Sn
112m1In 156.59(5) keV 20.56(6) min β+ 112Cd 4+
112m2In 350.76(9) keV 690(50) ns 7+
112m3In 613.69(14) keV 2.81(3) μs 8-
113In[n 10] 49 64 112.904058(3) Stable 9/2+ 0.0429(5)
113mIn 391.699(3) keV 1.6579(4) h IT 113In 1/2−
114In 49 65 113.904914(3) 71.9(1) s β+ (0.5%) 114Cd 1+
β (99.5%) 114Sn
114m1In 190.29(3) keV 49.51(1) d IT (96.75%) 114In 5+
β+ (3.25%) 114Cd
114m2In 501.94(3) keV 43.1(6) ms IT (96.75%) 114In (8−)
β+ (3.25%) 114Cd
114m3In 641.72(3) keV 4.3(4) μs (7+)
115In[n 10][n 11] 49 66 114.903878(5) 4.41(25)×1014 a β 115Sn 9/2+ 0.9571(5)
115mIn 336.244(17) keV 4.486(4) h IT (95%) 115In 1/2−
β (5%) 115Sn
116In 49 67 115.905260(5) 14.10(3) s β (99.98%)[7] 116Sn 1+
EC (0.02%)[7] 116Cd
116m1In 127.267(6) keV 54.29(17) min 5+
116m2In 289.660(6) keV 2.18(4) s 8-
117In 49 68 116.904514(6) 43.2(3) min β 117Sn 9/2+
117mIn 315.302(12) keV 116.2(3) min β (52.91%) 117Sn 1/2−
IT (47.09%) 117In
118In 49 69 117.906354(9) 5.0(5) s β 118Sn 1+
118m1In 100(50)# keV 4.364(7) min β 118Sn 5+
118m2In 240(50)# keV 8.5(3) s 8-
119In 49 70 118.905845(8) 2.4(1) min β 119Sn 9/2+
119m1In 311.37(3) keV 18.0(3) min β (94.4%) 119Sn 1/2−
IT (5.6%) 119In
119m2In 654.27(7) keV 130(15) ns 1/2+, 3/2+
120In 49 71 119.90796(4) 3.08(8) s β 120Sn 1+
120m1In 50(60)# keV 46.2(8) s 5+
120m2In 300(200)# keV 47.3(5) s β 120Sn 8(−)
121In 49 72 120.907846(29) 23.1(6) s β 121Sn 9/2+
121mIn 312.98(8) keV 3.88(10) min β (98.8%) 121Sn 1/2−
IT (1.2%) 121In
122In 49 73 121.91028(5) 1.5(3) s β 122Sn 1+
122m1In 40(60)# keV 10.3(6) s 5+
122m2In 290(140) keV 10.8(4) s β 122Sn 8-
123In 49 74 122.910438(26) 6.17(5) s β 123mSn (9/2)+
123mIn 327.21(4) keV 47.4(4) s β 123mSn (1/2)−
124In 49 75 123.91318(5) 3.11(10) s β 124Sn 3+
124mIn −20(70) keV 3.7(2) s β 124Sn (8)(−#)
IT 124In
125In 49 76 124.91360(3) 2.36(4) s β 125mSn 9/2+
125mIn 360.12(9) keV 12.2(2) s β 125Sn 1/2(−)
126In 49 77 125.91646(4) 1.53(1) s β 126Sn 3(+#)
126mIn 100(60) keV 1.64(5) s β 126Sn 8(−#)
127In 49 78 126.91735(4) 1.09(1) s β (99.97%) 127mSn 9/2(+)
β, n (.03%) 126Sn
127mIn 460(70) keV 3.67(4) s β (99.31%) 127mSn (1/2−)
β, n (.69%) 126Sn
128In 49 79 127.92017(5) 0.84(6) s β (99.96%) 128Sn (3)+
β, n (.038%) 127Sn
128m1In 247.87(10) keV 10(7) ms (1)−
128m2In 320(60) keV 720(100) ms β 128Sn (8−)
129In 49 80 128.92170(5) 611(4) ms β (99.75%) 129Sn 9/2+#
β, n (.25%) 128Sn
129m1In 380(70) keV 1.23(3) s β (97.2%) 129Sn (1/2−)#
β, n (2.5%) 128Sn
IT (.3%) 129In
129m2In 1688.0(5) keV 8.5(5) μs 17/2−
130In 49 81 129.92497(4) 0.29(2) s β (98.35%) 130Sn 1(−)
β, n (1.65%) 129Sn
130m1In 50(50) keV 538(5) ms 10-#
130m2In 400(60) keV 0.54(1) s (5+)
131In 49 82 130.92685(3) 0.28(3) s β (97.8%) 131Sn (9/2+)
β, n (2.19%) 130Sn
131m1In 363(37) keV 0.35(5) s (1/2−)
131m2In 4.10(7) MeV 320(60) ms (19/2+ to 23/2+)
132In 49 83 131.93299(7) 206(4) ms β (94.8%) 132Sn (7−)
β, n (5.2%) 131Sn
133In 49 84 132.93781(32)# 165(3) ms β, n (85%) 132Sn (9/2+)
β (15%) 133Sn
133mIn 330(40)# keV 180# ms IT 133In (1/2−)
134In 49 85 133.94415(43)# 140(4) ms β (79%) 134Sn
β, n (17%) 133Sn
β, 2n (4%) 132Sn
135In 49 86 134.94933(54)# 92(10) ms β 135Sn 9/2+#
136In 49 87 85 ms β 136Sn
137In 49 88 65 ms β 137Sn
This table header & footer:
  1. mIn  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC:Electron capture
    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  6. Bold italics symbol as daughter  Daughter product is nearly stable.
  7. Bold symbol as daughter  Daughter product is stable.
  8. () spin value  Indicates spin with weak assignment arguments.
  9. Used in medical applications
  10. 1 2 Fission product
  11. Primordial radionuclide

References

  1. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Indium". CIAAW. 2011.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; et al. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. "Octreoscan review". Medscape.
  5. "Precision mass measurements of indium isotopes allow conclusions on the mass of the doubly-magic atomic nucleus of tin-100". GSI. 13 June 2012. Retrieved 2023-09-10.
  6. "Tin 100 probed by studying its neighboring isotopes, indium 99 and 101 – IJCLab". Retrieved 2023-09-10.
  7. 1 2 National Nuclear Data Center. "NuDat 3.0". Brookhaven National Laboratory. Retrieved 12 February 2022.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.