Cyclic lipopeptide antibiotics
Identifiers
SymbolN/A
TCDB1.D.15
OPM superfamily163
OPM protein1t5n

A lipopeptide is a molecule consisting of a lipid connected to a peptide.[1] They are able to self-assemble into different structures.[1][2][3] Many bacteria produce these molecules as a part of their metabolism, especially those of the genus Bacillus, Pseudomonas and Streptomyces.[4] Certain lipopeptides are used as antibiotics.[5][6] Due to the structural and molecular properties such as the fatty acid chain, it poses the effect of weakening the cell function or destroying the cell.[7][8]Other lipopeptides are toll-like receptor agonists.[3] Certain lipopeptides can have strong antifungal and hemolytic activities.[9] It has been demonstrated that their activity is generally linked to interactions with the plasma membrane,[10] and sterol components of the plasma membrane could play a major role in this interaction.[11][12] It is a general trend that adding a lipid group of a certain length (typically C10–C12) to a lipopeptide will increase its bactericidal activity.[13] Lipopeptides with a higher amount of carbon atoms, for example 14 or 16, in its lipid tail will typically have antibacterial activity as well as anti-fungal activity.[13]Therefore, an increase in the alkyl chain can make lipopeptides soluble in water.[14]As well, it opens the cell membrane of the bacteria, so antimicrobial activity can take place.[15]

Lipopeptide detergents (LPDs) are composed of amphiphiles and two alkyl chains which are located on the last part of the peptide backbone. They were designed to mimic the architecture of the native membranes in which two alkyl chains in a lipid molecule facially interact with the hydrophobic segment of MPs.[16]

Examples

See also

References

  1. 1 2 Hamley IW (May 2015). "Lipopeptides: from self-assembly to bioactivity" (PDF). Chemical Communications. 51 (41): 8574–83. doi:10.1039/c5cc01535a. PMID 25797909.
  2. Kirkham S, Castelletto V, Hamley IW, Inoue K, Rambo R, Reza M, Ruokolainen J (July 2016). "Self-Assembly of the Cyclic Lipopeptide Daptomycin: Spherical Micelle Formation Does Not Depend on the Presence of Calcium Chloride" (PDF). ChemPhysChem. 17 (14): 2118–22. doi:10.1002/cphc.201600308. PMID 27043447. S2CID 44681934.
  3. 1 2 Hamley IW, Kirkham S, Dehsorkhi A, Castelletto V, Reza M, Ruokolainen J (December 2014). "Toll-like receptor agonist lipopeptides self-assemble into distinct nanostructures". Chemical Communications. 50 (100): 15948–51. doi:10.1039/c4cc07511k. PMID 25382300.
  4. Coutte F, Lecouturier D, Dimitrov K, Guez JS, Delvigne F, Dhulster P, Jacques P (July 2017). "Microbial lipopeptide production and purification bioprocesses, current progress and future challenges". Biotechnology Journal. 12 (7): 1600566. doi:10.1002/biot.201600566. PMID 28636078.
  5. US granted 6911525, Hill J, et al., "Lipopeptides as antibacterial agents", published 28 February 2002, assigned to Cubist Pharmaceuticals Inc
  6. Steenbergen JN, Alder J, Thorne GM, Tally FP (March 2005). "Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections". The Journal of Antimicrobial Chemotherapy. 55 (3): 283–8. doi:10.1093/jac/dkh546. PMID 15705644.
  7. Czechowicz P, Nowicka J (2018-01-01). "Antimicrobial Activity of Lipopeptides". Advancements of Microbiology. 57 (3): 213–227. doi:10.21307/PM-2018.57.3.213.
  8. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (November 2010). "Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics". FEMS Microbiology Reviews. 34 (6): 1037–1062. doi:10.1111/j.1574-6976.2010.00221.x. ISSN 1574-6976. PMID 20412310.
  9. Maget-Dana R, Peypoux F (February 1994). "Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties". Toxicology. 87 (1–3): 151–74. doi:10.1016/0300-483X(94)90159-7. PMID 8160184.
  10. Nasir MN, Besson F, Deleu M (September 2013). "Interactions des antibiotiques ituriniques avec la membrane plasmique. Apport des systèmes biomimétiques des membranes (synthèse bibliographique)". Biotechnologie, Agronomie, Société et Environnement. 17 (3): 505–16.
  11. Nasir MN, Besson F (May 2012). "Interactions of the antifungal mycosubtilin with ergosterol-containing interfacial monolayers". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1818 (5): 1302–8. doi:10.1016/j.bbamem.2012.01.020. PMID 22306791.
  12. Nasir MN, Besson F (September 2011). "Specific interactions of mycosubtilin with cholesterol-containing artificial membranes". Langmuir: The ACS Journal of Surfaces and Colloids. 27 (17): 10785–92. doi:10.1021/la200767e. PMID 21766869.
  13. 1 2 Kanwar SS, Meena KR (2015). "Lipopeptides as the Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics". BioMed Research International. 2015: 473050. doi:10.1155/2015/473050. PMC 4303012. PMID 25632392.
  14. Czechowicz P, Nowicka J (2018-01-01). "Antimicrobial Activity of Lipopeptides". Advancements of Microbiology. 57 (3): 213–227. doi:10.21307/PM-2018.57.3.213.
  15. Nasompag S, Dechsiri P, Hongsing N, Phonimdaeng P, Daduang S, Klaynongsruang S, Camesano TA, Patramanon R (October 2015). "Effect of acyl chain length on therapeutic activity and mode of action of the CX-KYR-NH2 antimicrobial lipopeptide". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1848 (10): 2351–2364. doi:10.1016/j.bbamem.2015.07.004. PMID 26170198.
  16. Zhang S, Corin K (2018). "Peptide surfactants in membrane protein purification and stabilization". In Koutsopoulos S (ed.). Peptide Applications in Biomedicine, Biotechnology and Bioengineering. Elsevier Science. ISBN 978-0-08-100736-5.{{cite book}}: CS1 maint: overridden setting (link)

Further reading


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.