The table below shows some of the parameters of common superconductors. X:Y means material X doped with element Y, TC is the highest reported transition temperature in kelvins and HC is a critical magnetic field in tesla. "BCS" means whether or not the superconductivity is explained within the BCS theory.
List
Substance | Class | TC (K) | HC (T) | Type | BCS | References |
---|---|---|---|---|---|---|
Al | Element | 1.20 | 0.01 | I | yes | [1][2][3] |
Bi | Element | 5.3×10−4 | 5.2×10−6 | I | no | [note 1] [4] |
Cd | Element | 0.52 | 0.0028 | I | yes | [2][3] |
Diamond:B | Element | 11.4 | 4 | II | yes | [5][6][7] |
Ga | Element | 1.083 | 0.0058 | I | yes | [2][3][8] |
Hf | Element | 0.165 | I | yes | [2] | |
α-Hg | Element | 4.15 | 0.04 | I | yes | [2][3] |
β-Hg | Element | 3.95 | 0.04 | I | yes | [2][3] |
In | Element | 3.4 | 0.03 | I | yes | [2][3] |
Ir | Element | 0.14 | 0.0016 | I | yes | [2][8] |
α-La | Element | 4.9 | I | yes | [2] | |
β-La | Element | 6.3 | I | yes | [2] | |
Li | Element | 4×10−4 | I | [9] | ||
Mo | Element | 0.92 | 0.0096 | I | yes | [2][8] |
Nb | Element | 9.26 | 0.82 | II | yes | [2][3] |
Os | Element | 0.65 | 0.007 | I | yes | [2] |
Pa | Element | 1.4 | I | yes | [10] | |
Pb | Element | 7.19 | 0.08 | I | yes | [2][3] |
Re | Element | 2.4 | 0.03 | I | yes | [2][3][11] |
Rh | Element | 3.25×10−4 | 4.9×10−6 | I | [12] | |
Ru | Element | 0.49 | 0.005 | I | yes | [2][3] |
Si:B | Element | 0.4 | 0.4 | II | yes | [13] |
Sn | Element | 3.72 | 0.03 | I | yes | [2][3] |
Ta | Element | 4.48 | 0.09 | I | yes | [2][3] |
Tc | Element | 7.46–11.2 | 0.04 | II | yes | [2][3] |
α-Th | Element | 1.37 | 0.013 | I | yes | [2][3] |
Ti | Element | 0.39 | 0.01 | I | yes | [2][3] |
Tl | Element | 2.39 | 0.02 | I | yes | [2][3] |
α-U | Element | 0.68 | I | yes | [2][10] | |
β-U | Element | 1.8 | I | yes | [10] | |
V | Element | 5.03 | 1 | II | yes | [2][3] |
α-W | Element | 0.015 | 0.00012 | I | yes | [8][10][14] |
β-W | Element | 1–4 | [14] | |||
Zn | Element | 0.855 | 0.005 | I | yes | [2][3] |
Zr | Element | 0.55 | 0.014 | I | yes | [2][3] |
Ba8Si46 | Clathrate | 8.07 | 0.008 | II | yes | [15] |
CaH6 | Clathrate | 215 (172 GPa) | [16][17] | |||
C6Ca | Compound | 11.5 | 0.95 | II | [18] | |
C6Li3Ca2 | Compound | 11.15 | II | [18] | ||
C8K | Compound | 0.14 | II | [18] | ||
C8KHg | Compound | 1.4 | II | [18] | ||
C6K | Compound | 1.5 | II | [19] | ||
C3K | Compound | 3.0 | II | [19] | ||
C3Li | Compound | <0.35 | II | [19] | ||
C2Li | Compound | 1.9 | II | [19] | ||
C3Na | Compound | 2.3–3.8 | II | [19] | ||
C2Na | Compound | 5.0 | II | [19] | ||
C8Rb | Compound | 0.025 | II | [18] | ||
C6Sr | Compound | 1.65 | II | [18] | ||
Sr2RuO4 | Compound | 0.93 | II | [20] | ||
C6Yb | Compound | 6.5 | II | [18] | ||
C60Cs2Rb | Compound | 33 | II | yes | [21] | |
C60K3 | Compound | 19.8 | 0.013 | II | yes | [15][22] |
C60RbX | Compound | 28 | II | yes | [23] | |
C60Cs3 | Compound | 38 | ||||
FeB4 | Compound | 2.9 | II | [24] | ||
InN | Compound | 3 | II | yes | [25] | |
In2O3 | Compound | 3.3 | ~3 | II | yes | [26] |
LaB6 | Compound | 0.45 | yes | [27] | ||
La3Ni2O7 | Nickelate | 80 (>14 GPa) | [28] | |||
MgB2 | Compound | 39 | 74 | II | yes | [29] |
Nb3Al | Compound | 18 | II | yes | [2] | |
NbC1-xNx | Compound | 17.8 | 12 | II | yes | [30][31] |
Nb3Ge | Compound | 23.2 | 37 | II | yes | [32] |
NbO | Compound | 1.38 | II | yes | [33] | |
NbN | Compound | 16 | II | yes | [2] | |
Nb3Sn | Compound | 18.3 | 30 | II | yes | [34] |
NbTi | Compound | 10 | 15 | II | yes | [2] |
SiC:B | Compound | 1.4 | 0.008 | I | yes | [35] |
SiC:Al | Compound | 1.5 | 0.04 | II | yes | [35] |
TiN | Compound | 5.6 | 5 | I | yes | [36][37][38] |
V3Si | Compound | 17 | [39] | |||
YB6 | Compound | 8.4 | II | yes | [40][41][42] | |
ZrN | Compound | 10 | yes | [43] | ||
ZrB12 | Compound | 6.0 | II | yes | [42] | |
UTe2 | Compound | 2.0 | no | [44] | ||
CuBa0.15La1.85O4 | Cuprate | 52.5 | [45] | |||
YBCO | Cuprate | 95 | 120–250 | II | no | |
EuBCO | Cuprate | 93 | II | no | [46] | |
GdBCO | Cuprate | 91 | II | no | [47] | |
BSCCO | Cuprate | 104 | ||||
HBCCO | Cuprate | 135 | ||||
SmFeAs(O,F) | Iron-based | 55 | ||||
CeFeAs(O,F) | Iron-based | 41 | ||||
LaFeAs(O,F) | Iron-based | 26 | ||||
LaFeSiH | Iron-based | 11 | [48] | |||
LaFePO | Iron-based | 4 | ||||
FeSe:SrTiO3 | Iron-based | 60-100 | ||||
(Ba,K)Fe2As2 | Iron-based | 38 | ||||
NaFeAs | Iron-based | 20 | ||||
HgTlBaCaCuO | Compound | 164 | II | |||
H2S | Polyhydride | 203 (155 GPa) | II | |||
LaH10 | Polyhydride | 250 (150 GPa) | [49] | |||
Yb | Element | 1.4 (>86 GPa) | no | [50] |
Notes
References
- ↑ Cochran, J. F.; Mapother, D. E. (1958). "Superconducting Transition in Aluminum". Physical Review. 111 (1): 132–142. Bibcode:1958PhRv..111..132C. doi:10.1103/PhysRev.111.132.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Matthias, B. T.; Geballe, T. H.; Compton, V. B. (1963). "Superconductivity". Reviews of Modern Physics. 35 (1): 1–22. Bibcode:1963RvMP...35....1M. doi:10.1103/RevModPhys.35.1.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Eisenstein, J. (1954). "Superconducting Elements". Reviews of Modern Physics. 26 (3): 277–291. Bibcode:1954RvMP...26..277E. doi:10.1103/RevModPhys.26.277.
- 1 2 Prakash, O.; et al. (2017). "Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure". Science. 355 (6320): 52–55. arXiv:1603.04310. Bibcode:2017Sci...355...52P. doi:10.1126/science.aaf8227. PMID 27934703. S2CID 206649934.
- ↑ Ekimov, E. A.; Sidorov, V. A.; Bauer, E. D.; Mel'Nik, N. N.; Curro, N. J.; Thompson, J. D.; Stishov, S. M. (2004). "Superconductivity in diamond". Nature. 428 (6982): 542–545. arXiv:cond-mat/0404156. Bibcode:2004Natur.428..542E. doi:10.1038/nature02449. PMID 15057827. S2CID 4423950.
- ↑ Ekimov, E. A.; Sidorov, V. A.; Zoteev, A. V.; Lebed, Y. B.; Thompson, J. D.; Stishov, S. M. (2008). "Structure and superconductivity of isotope-enriched boron-doped diamond". Science and Technology of Advanced Materials. 9 (4): 044210. Bibcode:2008STAdM...9d4210E. doi:10.1088/1468-6996/9/4/044210. PMC 5099641. PMID 27878027.
- ↑ Takano, Y.; Takenouchi, T.; Ishii, S.; Ueda, S.; Okutsu, T.; Sakaguchi, I.; Umezawa, H.; Kawarada, H.; Tachiki, M. (2007). "Superconducting properties of homoepitaxial CVD diamond". Diamond and Related Materials. 16 (4–7): 911. Bibcode:2007DRM....16..911T. doi:10.1016/j.diamond.2007.01.027. S2CID 95904362.
- 1 2 3 4 Kaxiras, Efthimios (2003). Atomic and electronic structure of solids. Cambridge University Press. p. 283. ISBN 0-521-52339-7.
- ↑ Tuoriniemi, J.; et al. (2007). "Superconductivity in lithium below 0.4 millikelvin at ambient pressure". Nature. 447 (7141): 187–189. Bibcode:2007Natur.447..187T. doi:10.1038/nature05820. PMID 17495921. S2CID 4430500.
- 1 2 3 4 Fowler, R. D.; Matthias, B. T.; Asprey, L. B.; Hill, H. H.; Lindsay, J. D. G.; Olsen, C. E.; White, R. W. (1965). "Superconductivity of Protactinium". Physical Review Letters. 15 (22): 860. Bibcode:1965PhRvL..15..860F. doi:10.1103/PhysRevLett.15.860.
- ↑ Daunt, J. G.; Smith, T. S. (1952). "Superconductivity of Rhenium". Physical Review. 88 (2): 309. Bibcode:1952PhRv...88..309D. doi:10.1103/PhysRev.88.309.
- ↑ Buchal, Ch.; et al. (1983). "Superconductivity of Rhodium at Ultralow Temperatures". Phys. Rev. Lett. 50 (1): 64–67. Bibcode:1983PhRvL..50...64B. doi:10.1103/PhysRevLett.50.64.
- ↑ Bustarret, E.; Marcenat, C.; Achatz, P.; Kačmarčik, J.; Lévy, F.; Huxley, A.; Ortéga, L.; Bourgeois, E.; Blase, X.; Débarre, D.; Boulmer, J. (2006). "Superconductivity in doped cubic silicon". Nature. 444 (7118): 465–8. Bibcode:2006Natur.444..465B. doi:10.1038/nature05340. PMID 17122852. S2CID 4383370.
- 1 2 Lita, A. E.; Rosenberg, D.; Nam, S.; Miller, A. J.; Balzar, D.; Kaatz, L. M.; Schwall, R. E. (2005). "Tuning of Tungsten Thin Film Superconducting Transition Temperature for Fabrication of Photon Number Resolving Detectors". IEEE Transactions on Applied Superconductivity. 15 (2): 3528. Bibcode:2005ITAS...15.3528L. doi:10.1109/TASC.2005.849033. S2CID 5804011.
- 1 2 Rachi, T.; Kumashiro, R.; Fukuoka, H.; Yamanaka, S.; Tanigaki, K. (2006). "Sp3-network superconductors made from IVth-group elements". Science and Technology of Advanced Materials. 7: S88–S93. Bibcode:2006STAdM...7S..88R. doi:10.1016/j.stam.2006.04.006.
- ↑ Ma, Liang; Wang, Kui; Xie, Yu; Yang, Xin; Wang, Yingying; Zhou, Mi; Liu, Hanyu; Yu, Xiaohui; Zhao, Yongsheng; Wang, Hongbo; Liu, Guangtao (2022-04-20). "High-Temperature Superconducting Phase in Clathrate Calcium Hydride ${\mathrm{CaH}}_{6}$ up to 215 K at a Pressure of 172 GPa". Physical Review Letters. 128 (16): 167001. doi:10.1103/PhysRevLett.128.167001. PMID 35522494. S2CID 248543296.
- ↑ Wells, Sarah (2022-04-20). "Elusive Superconducting Superhydride Synthesized". Physics. 15. Bibcode:2022PhyOJ..15..s53W. doi:10.1103/Physics.15.s53. S2CID 249250489.
- 1 2 3 4 5 6 7 Emery, N.; Hérold, C.; Marêché, J. F. O.; Lagrange, P. (2008). "Synthesis and superconducting properties of CaC6". Science and Technology of Advanced Materials. 9 (4): 044102. Bibcode:2008STAdM...9d4102E. doi:10.1088/1468-6996/9/4/044102. PMC 5099629. PMID 27878015.
- 1 2 3 4 5 6 Belash, I. T.; Zharikov, O. V.; Palnichenko, A. V. (1989). "Superconductivity of GIC with Li, Na and K". Synthetic Metals. 34 (1–3): 455–460. doi:10.1016/0379-6779(89)90424-4.
- ↑ Maeno, Yoshiteru; Rice, T. Maurice; Sigrist, Manfred (2001). "The Intriguing Superconductivity of Strontium Ruthenate". Physics Today. 54 (1): 42–47. Bibcode:2001PhT....54a..42M. doi:10.1063/1.1349611. hdl:2433/49957. ISSN 0031-9228. S2CID 53644564.
- ↑ Tanigaki, K.; Ebbesen, T. W.; Saito, S.; Mizuki, J.; Tsai, J. S.; Kubo, Y.; Kuroshima, S. (1991). "Superconductivity at 33 K in CsxRbyC60". Nature. 352 (6332): 222. Bibcode:1991Natur.352..222T. doi:10.1038/352222a0. S2CID 4335561.
- ↑ Xiang, X. -D.; Hou, J. G.; Briceno, G.; Vareka, W. A.; Mostovoy, R.; Zettl, A.; Crespi, V. H.; Cohen, M. L. (1992). "Synthesis and Electronic Transport of Single Crystal K3C60". Science. 256 (5060): 1190–1. Bibcode:1992Sci...256.1190X. doi:10.1126/science.256.5060.1190. PMID 17795215. S2CID 11537235.
- ↑ Rosseinsky, M.; Ramirez, A.; Glarum, S.; Murphy, D.; Haddon, R.; Hebard, A.; Palstra, T.; Kortan, A.; Zahurak, S.; Makhija, A. (1991). "Superconductivity at 28 K in RbxC60" (PDF). Physical Review Letters. 66 (21): 2830–2832. Bibcode:1991PhRvL..66.2830R. doi:10.1103/PhysRevLett.66.2830. PMID 10043627.
- ↑ "First fully computer-designed superconductor". KurzweilAI. Retrieved 2013-10-11.
- ↑ Inushima, T. (2006). "Electronic structure of superconducting InN". Science and Technology of Advanced Materials. 7: S112–S116. Bibcode:2006STAdM...7S.112I. doi:10.1016/j.stam.2006.06.004.
- ↑ Makise, K.; Kokubo, N.; Takada, S.; Yamaguti, T.; Ogura, S.; Yamada, K.; Shinozaki, B.; Yano, K.; Inoue, K.; Nakamura, H. (2008). "Superconductivity in transparent zinc-doped In2O3 films having low carrier density". Science and Technology of Advanced Materials. 9 (4): 044208. Bibcode:2008STAdM...9d4208M. doi:10.1088/1468-6996/9/4/044208. PMC 5099639. PMID 27878025.
- ↑ Schell, G.; Winter, H.; Rietschel, H.; Gompf, F. (1982). "Electronic structure and superconductivity in metal hexaborides". Physical Review B. 25 (3): 1589. Bibcode:1982PhRvB..25.1589S. doi:10.1103/PhysRevB.25.1589.
- ↑ Sun, Hualei; Huo, Mengwu; Hu, Xunwu; Li, Jingyuan; Liu, Zengjia; Han, Yifeng; Tang, Lingyun; Mao, Zhongquan; Yang, Pengtao; Wang, Bosen; Cheng, Jinguang; Yao, Dao-Xin; Zhang, Guang-Ming; Wang, Meng (2023-09-21). "Signatures of superconductivity near 80 K in a nickelate under high pressure". Nature. 621 (7979): 493–498. arXiv:2305.09586. Bibcode:2023Natur.621..493S. doi:10.1038/s41586-023-06408-7. ISSN 0028-0836. PMID 37437603. S2CID 259843168.
- ↑ Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. (2001). "Superconductivity at 39 K in magnesium diboride". Nature. 410 (6824): 63–4. Bibcode:2001Natur.410...63N. doi:10.1038/35065039. PMID 11242039. S2CID 4388025.
- ↑ Bernhardt, K.-H. (1975). "Preparation and Superconducting Properties of Niobium Carbonitride Wires" (PDF). Z. Naturforsch. A. 30 (4): 528–532. Bibcode:1975ZNatA..30..528B. doi:10.1515/zna-1975-0422. S2CID 95077302.
- ↑ Pessall, N.; Jones, C. K.; Johansen, and J. K. Hulm Bernhardt, H. A.; Hulm, J. K. (1965). "Critical Supercurrents in Niobium Carbonitrides". Appl. Phys. Lett. 7 (2): 38–39. Bibcode:1965ApPhL...7...38P. doi:10.1063/1.1754287.
- ↑ Oya, G. I.; Saur, E. J. (1979). "Preparation of Nb3Ge films by chemical transport reaction and their critical properties". Journal of Low Temperature Physics. 34 (5–6): 569. Bibcode:1979JLTP...34..569O. doi:10.1007/BF00114941. S2CID 119846986.
- ↑ Hulm, J. K.; Jones, C. K.; Hein, R. A.; Gibson, J. W. (1972). "Superconductivity in the TiO and NbO systems". Journal of Low Temperature Physics. 7 (3–4): 291. Bibcode:1972JLTP....7..291H. doi:10.1007/BF00660068. S2CID 122554738.
- ↑ Matthias, B. T.; Geballe, T. H.; Geller, S.; Corenzwit, E. (1954). "Superconductivity of Nb3Sn". Physical Review. 95 (6): 1435. Bibcode:1954PhRv...95.1435M. doi:10.1103/PhysRev.95.1435.
- 1 2 Muranaka, T.; Kikuchi, Y.; Yoshizawa, T.; Shirakawa, N.; Akimitsu, J. (2008). "Superconductivity in carrier-doped silicon carbide". Science and Technology of Advanced Materials. 9 (4): 044204. Bibcode:2008STAdM...9d4204M. doi:10.1088/1468-6996/9/4/044204. PMC 5099635. PMID 27878021.
- ↑ Pierson, Hugh O. (1996). Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications. William Andrew. p. 193. ISBN 0-8155-1392-5.
- ↑ Troitskii, V. N.; Marchenko, V. A.; Domashnev, I. A. (1982). "Magnetic properties of titanium nitride in superconducting state". Soviet Physics - Solid State. 24 (4): 689–690.
- ↑ Pracht, Uwe S.; Scheffler, Marc; Dressel, Martin; Kalok, David F.; Strunk, Christoph; Baturina, Tatyana I. (2012-11-05). "Direct observation of the superconducting gap in a thin film of titanium nitride using terahertz spectroscopy". Physical Review B. 86 (18): 184503. arXiv:1210.6771. Bibcode:2012PhRvB..86r4503P. doi:10.1103/PhysRevB.86.184503. S2CID 118417332.
- ↑ Tanaka, Shigeki; Handoko; Miyake, Atsushi; Kagayama, Tomoko; Shimizu, Katsuya; Böhmer, Anna. E.; Burger, Philipp; Hardy, Frederic; Meingast, Christoph (2012-01-01). "Superconducting and Martensitic Transitions of V3Si and Nb3Sn under High Pressure". Journal of the Physical Society of Japan. 81 (Suppl.B): SB026. Bibcode:2012JPSJ...81B..26T. doi:10.1143/JPSJS.81SB.SB026. ISSN 0031-9015.
- ↑ Fisk, Z.; Schmidt, P. H.; Longinotti, L. D. (1976). "Growth of YB6 single crystals". Materials Research Bulletin. 11 (8): 1019. doi:10.1016/0025-5408(76)90179-3.
- ↑ Szabó, P.; Kačmarčík, J.; Samuely, P.; Girovský, J. N.; Gabáni, S.; Flachbart, K.; Mori, T. (2007). "Superconducting energy gap of YB6 studied by point-contact spectroscopy". Physica C: Superconductivity. 460–462: 626–627. Bibcode:2007PhyC..460..626S. doi:10.1016/j.physc.2007.04.135.
- 1 2 Tsindlekht, M. I.; Genkin, V. M.; Leviev, G. I.; Felner, I.; Yuli, O.; Asulin, I.; Millo, O.; Belogolovskii, M. A.; Shitsevalova, N. Y. (2008). "Linear and nonlinear low-frequency electrodynamics of surface superconducting states in an yttrium hexaboride single crystal". Physical Review B. 78 (2): 024522. arXiv:0707.2211. Bibcode:2008PhRvB..78b4522T. doi:10.1103/PhysRevB.78.024522. S2CID 119740895.
- ↑ Lengauer, W. (1990). "Characterization of nitrogen distribution profiles in fcc transition metal nitrides by means of Tc measurements". Surface and Interface Analysis. 15 (6): 377–382. doi:10.1002/sia.740150606.
- ↑ Rosa, Priscila F. S.; Weiland, Ashley; Fender, Shannon S.; Scott, Brian L.; Ronning, Filip; Thompson, Joe D.; Bauer, Eric D.; Thomas, Sean M. (2022-05-23). "Single thermodynamic transition at 2 K in superconducting UTe2 single crystals". Communications Materials. 3 (1): 33. arXiv:2110.06200. Bibcode:2022CoMat...3...33R. doi:10.1038/s43246-022-00254-2. ISSN 2662-4443. S2CID 248970170.
- ↑ Chu, C. W.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J. (1987-01-30). "Superconductivity at 52.5 K in the Lanthanum-Barium-Copper-Oxide System". Science. 235 (4788): 567–569. Bibcode:1987Sci...235..567C. doi:10.1126/science.235.4788.567. ISSN 0036-8075. PMID 17758247. S2CID 32235782.
- ↑ Malavasi, L.; Tamburini, U. Anselmi; Galinetto, P.; Ghigna, P.; Flor, G. (2001). "The High-Temperature Superconductor EuBa2Cu3O6 + x: Role of Thermal History on Microstructure and Superconducting Properties". Journal of Materials Synthesis and Processing. 9 (1): 31–37. doi:10.1023/A:1011334631235. S2CID 135739533.
- ↑ Shi, Y; Babu, N Hari; Iida, K; Cardwell, D A (2008-02-01). "Superconducting properties of Gd-Ba-Cu-O single grains processed from a new, Ba-rich precursor compound". Journal of Physics: Conference Series. 97 (1): 012250. Bibcode:2008JPhCS..97a2250S. doi:10.1088/1742-6596/97/1/012250. ISSN 1742-6596.
- ↑ Bernardini, F.; et al. (2008-12-03). "Iron-based superconductivity extended to the novel silicide LaFeSiH". Phys. Rev. B. 97 (10): 100504. arXiv:1701.05010. Bibcode:2018PhRvB..97j0504B. doi:10.1103/PhysRevB.97.100504. hdl:11584/247860. S2CID 119004395.
- ↑ Drozdov, A. P.; Kong, P. P.; Minkov, V. S.; Besedin, S. P.; Kuzovnikov, M. A.; Mozaffari, S.; Balicas, L.; Balakirev, F. F.; Graf, D. E.; Prakapenka, V. B.; Greenberg, E.; Knyazev, D. A.; Tkacz, M.; Eremets, M. I. (May 2019). "Superconductivity at 250 K in lanthanum hydride under high pressures". Nature. 569 (7757): 528–531. arXiv:1812.01561. Bibcode:2019Natur.569..528D. doi:10.1038/s41586-019-1201-8. ISSN 0028-0836. PMID 31118520. S2CID 119231000.
- ↑ Song, J; Fabbris, G; Bi, W; Haskel, D; Schilling, J.S. (2018-07-20). "Pressure-Induced Superconductivity in Elemental Ytterbium Metal". Physical Review Letters. 121 (3): 037004. arXiv:1801.03630. Bibcode:2018PhRvL.121c7004S. doi:10.1103/PhysRevLett.121.037004. PMID 30085803.
External links
- A review of 700 potential superconductors Hosono, H.; Tanabe, K.; Takayama-Muromachi, E.; Kageyama, H.; Yamanaka, S.; Kumakura, H.; Nohara, M.; Hiramatsu, H.; Fujitsu, S. (2015). "Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides". Science and Technology of Advanced Materials. 16 (3): 033503. arXiv:1505.02240. Bibcode:2015STAdM..16c3503H. doi:10.1088/1468-6996/16/3/033503. PMC 5099821. PMID 27877784.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.