In mathematics, a matrix factorization of a polynomial is a technique for factoring irreducible polynomials with matrices. David Eisenbud proved that every multivariate real-valued polynomial p without linear terms can be written as a AB = pI, where A and B are square matrices and I is the identity matrix.[1] Given the polynomial p, the matrices A and B can be found by elementary methods.[2]

  • Example:

The polynomial x2 + y2 is irreducible over R[x,y], but can be written as

References

  1. Eisenbud, David (1980-01-01). "Homological algebra on a complete intersection, with an application to group representations". Transactions of the American Mathematical Society. 260 (1): 35. doi:10.1090/S0002-9947-1980-0570778-7. ISSN 0002-9947.
  2. Crisler, David; Diveris, Kosmas, Matrix Factorizations of Sums of Squares Polynomials (PDF)


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.