The Middle Eocene Climatic Optimum (MECO), also called the Middle Eocene Thermal Maximum (METM),[1] was a period of very warm climate that occurred during the Bartonian, from around 40.5 to 40.0 Ma.[2] It marked a notable reversal of the overall trend of global cooling that characterised the Middle and Late Eocene.[1]

Duration

The length of time that the MECO spanned is disputed, although it is known to have lasted from around 40.5 to 40.0 Ma. Depending on location and methodology, the event's duration has been variously estimated at 300,[3] 500,[2] 600,[4] and 750 kyr.[5]

Climate

The MECO was globally synchronous and observed in both marine and terrestrial sequences.[6] The global mean surface temperature during the MECO was about 23.1 °C.[1] In the Tethys Ocean, sea surface temperatures (SSTs) have been estimated at 32-36 °C.[7] In the southwestern Pacific, SSTs rose from an average of about 22 °C to 28 °C.[8] Deep ocean temperatures were about 9 °C at the peak of the MECO.[9]

In Western North America, lakes became markedly less saline.[10] Continental Asia was once thought to have experienced intense aridification during the MECO, though more recent research has shown that this took place after the MECO, when global average temperatures resumed dropping.[11]

A decline in seawater oxygen content occurred during the MECO in the Tethys Ocean.[12][13][7] Dysoxic conditions in the Tethys lasted for about 400-500 kyr according to geochemical study of the Alano site in northeastern Italy.[14] Evidence from the Southern Ocean indicates deep water deoxygenation developed in this marine region too.[15] Organic carbon burial rates skyrocketed in these oxygen-poor waters, which may have acted as a negative feedback that helped restore global temperatures to their pre-MECO state after the warming ended.[16] However, deoxygenation was not globally ubiquitous; South Atlantic sites such as South Atlantic Ocean Drilling Program Site 702 show no evidence of any shift towards dysoxic conditions.[3]

There is evidence of ocean acidification occurring during the MECO in the form of major declines in carbonate accumulation throughout the ocean at depths of greater than three kilometres.[2] Acidification affected the entire water column, extending as far as abyssal waters.[17]

Causes

The MECO was marked by a notable rise in atmospheric carbon dioxide concentrations.[2] At their peak, pCO2 values may have reached as high as 4,000 ppm.[18] One possible cause of this rise in pCO2 was the collision of India with Eurasia and formation of the Himalayas that was occurring at this time, which would have metamorphically liberated large quantities of the greenhouse gas, although the timing of metamorphic carbon release is poorly resolved. Enhanced rates of seafloor spreading and metamorphic decarbonation reactions around the region between Australia and Antarctica, combined with increased volcanic activity in this region, may also have been a source of the carbon injection into the atmosphere.[4] Yet another hypothesis implicates increased continental arc volcanism in what are now Azerbaijan and Iran for this surge in atmospheric greenhouse gas levels.[19]

Diminished negative feedback of silicate weathering may have occurred around the time of the MECO's onset and allowed volcanically released carbon dioxide to persist in the atmosphere for longer. This may have come about as a result of continental rocks having become less weatherable during the very warm Early Eocene and Early Middle Eocene; by the time of the MECO, few areas of silicate rock potent enough to absorb significant amounts of carbon dioxide would have remained.[20] The MECO warmth may have been sustained through a further inhibition of silicate weathering following the onset of warming via enhanced clay formation.[21]

Milankovitch cycles have been suggested to have played a role in triggering MECO warmth. The MECO coincided with a minimum in the 2.4 Myr eccentricity cycle that occurred around 40.2 Ma.[22] This 2.4 Myr eccentricity minimum coincided with a minimum in the 400 kyr eccentricity cycle; the simultaneous occurrence of these eccentricity minima likely fomented the conditions enabling the MECO's persistent global warmth.[23]

Biotic effects

Planktonic foraminifera underwent a major biotic turnover; acarinids were greatly reduced in diversity and morozovellids went extinct.[24] The range of the planktonic foraminifer Orbulinoides beckmanni, a species well adapted to warm waters, expanded to higher latitudes during the MECO.[5] Benthic foraminifera exhibited a decline due to enhanced respiration of pelagic heterotrophs, limiting the amount of organic matter making its way to the ocean depths.[25][26]

In North America, the MECO catalysed the faunal turnover leading to the rise of crown-group carnivorans to prominence in the continent's terrestrial ecosystems.[27][28]

The plant diversity of Patagonia increased by 40% during the MECO, largely due to the southward migration of neotropical plants that mixed with the established temperate Gondwanan flora. Nourished by abundant carbon dioxide and a favourable temperature, this highly diverse flora reverted to pre-MECO levels of biodiversity after the hothouse concluded.[29]

See also

References

  1. 1 2 3 Scotese, Christopher R.; Song, Haijun; Mills, Benjamin J.W.; van der Meer, Douwe G. (1 April 2021). "Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years". Earth-Science Reviews. 215: 103503. Bibcode:2021ESRv..21503503S. doi:10.1016/j.earscirev.2021.103503. S2CID 233579194. Retrieved 24 December 2023 via Elsevier Science Direct.
  2. 1 2 3 4 Bohaty, Steven M.; Zachos, James C.; Florindo, Fabio; Delaney, Margaret L. (9 May 2009). "Coupled greenhouse warming and deep-sea acidification in the middle Eocene". Paleoceanography and Paleoclimatology. 24 (2). Bibcode:2009PalOc..24.2207B. doi:10.1029/2008PA001676. ISSN 0883-8305. Retrieved 24 December 2023.
  3. 1 2 Rivero-Cuesta, L.; Westerhold, T.; Agnini, C.; Dallanave, E.; Wilkens, R. H.; Alegret, L. (27 November 2019). "Paleoenvironmental Changes at ODP Site 702 (South Atlantic): Anatomy of the Middle Eocene Climatic Optimum". Paleoceanography and Paleoclimatology. 34 (12): 2047–2066. Bibcode:2019PaPa...34.2047R. doi:10.1029/2019PA003806. hdl:11577/3322443. ISSN 2572-4517. Retrieved 24 December 2023.
  4. 1 2 Bohaty, Steven M.; Zachos, James C. (1 November 2003). "Significant Southern Ocean warming event in the late middle Eocene". Geology. 31 (11): 1017. Bibcode:2003Geo....31.1017B. doi:10.1130/G19800.1. ISSN 0091-7613. Retrieved 24 December 2023.
  5. 1 2 Edgar, K. M.; Wilson, P. A.; Sexton, P. F.; Gibbs, S. J.; Roberts, A. P.; Norris, R. D. (20 November 2010). "New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes". Palaeogeography, Palaeoclimatology, Palaeoecology. 297 (3–4): 670–682. Bibcode:2010PPP...297..670E. doi:10.1016/j.palaeo.2010.09.016. Retrieved 24 December 2023 via Elsevier Science Direct.
  6. Shi, Juye; Jin, Zhijun; Liu, Quanyou; Zhang, Rui; Huang, Zhenkai (March 2019). "Cyclostratigraphy and astronomical tuning of the middle eocene terrestrial successions in the Bohai Bay Basin, Eastern China". Global and Planetary Change. 174: 115–126. Bibcode:2019GPC...174..115S. doi:10.1016/j.gloplacha.2019.01.001. S2CID 135265513. Retrieved 24 December 2023 via Elsevier Science Direct.
  7. 1 2 Cramwinckel, Margot J.; Van der Ploeg, Robin; Van Helmond, Niels A. G. M.; Waarlo, Niels; Agnini, Claudia; Bijl, Peter K.; Van der Boon, Annique; Brinkhuis, Henk; Frieling, Joost; Krijgsman, Wout; Mather, Tamsin A.; Middelburg, Jack J.; Peterse, Francien; Slomp, Caroline P.; Sluijs, Appy (1 September 2022). "Deoxygenation and organic carbon sequestration in the Tethyan realm associated with the middle Eocene climatic optimum". Geological Society of America Bulletin. 135 (5–6): 1280–1296. doi:10.1130/B36280.1. S2CID 252033074. Retrieved 18 May 2023.
  8. Bijl, Peter K.; Houben, Alexander J. P.; Schouten, Stefan; Bohaty, Steven M.; Sluijs, Appy; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S.; Brinkhuis, Henk (5 November 2010). "Transient Middle Eocene Atmospheric CO 2 and Temperature Variations". Science. 330 (6005): 819–821. doi:10.1126/science.1193654. ISSN 0036-8075. Retrieved 10 January 2024.
  9. Cramwinckel, Margot J.; Huber, Matthew; Kocken, Ilja J.; Agnini, Claudia; Bijl, Peter K.; Bohaty, Steven M.; Frieling, Joost; Goldner, Aaron; Hilgen, Frederik J.; Kip, Elizabeth L.; Peterse, Francien; van der Ploeg, Robin; Röhl, Ursula; Schouten, Stefan; Sluijs, Appy (2 July 2018). "Synchronous tropical and polar temperature evolution in the Eocene". Nature. 559 (7714): 382–386. doi:10.1038/s41586-018-0272-2. ISSN 1476-4687. Retrieved 10 January 2024.
  10. Mulch, Andreas; Chamberlain, C. P.; Cosca, Michael A.; Teyssier, Christian; Methner, Katharina; Hren, Michael T.; Graham, Stephan A. (April 2015). "Rapid change in high-elevation precipitation patterns of western North America during the Middle Eocene Climatic Optimum (MECO)". American Journal of Science. 315 (4): 317–336. Bibcode:2015AmJS..315..317M. doi:10.2475/04.2015.02. S2CID 129918182. Retrieved 18 May 2023.
  11. Bosboom, Roderic E.; Abels, Hemmo A.; Hoorn, Carina; van den Berg, Bas C. J.; Guo, ZhaoJie; Dupont-Nivet, Guillaume (1 March 2014). "Aridification in continental Asia after the Middle Eocene Climatic Optimum (MECO)". Earth and Planetary Science Letters. 389: 34–42. Bibcode:2014E&PSL.389...34B. doi:10.1016/j.epsl.2013.12.014. ISSN 0012-821X. Retrieved 24 December 2023 via Elsevier Science Direct.
  12. D’Onofrio, Roberta; Zaky, Amr S.; Frontalini, Fabrizio; Luciani, Valeria; Catanzariti, Rita; Francescangeli, Fabio; Giorgioni, Martino; Coccioni, Rodolfo; Özcan, Ercan; Jovane, Luigi (30 November 2021). "Impact of the Middle Eocene Climatic Optimum (MECO) on Foraminiferal and Calcareous Nannofossil Assemblages in the Neo-Tethyan Baskil Section (Eastern Turkey): Paleoenvironmental and Paleoclimatic Reconstructions". Applied Sciences. 11 (23): 11339. doi:10.3390/app112311339. ISSN 2076-3417.
  13. Spofforth, D. J. A.; Agnini, C.; Pälike, H.; Rio, D.; Fornaciari, E.; Giusberi, L.; Luciani, V.; Lanci, L.; Muttoni, G. (24 August 2010). "Organic carbon burial following the middle Eocene climatic optimum in the central western Tethys". Paleoceanography and Paleoclimatology. 25 (3): 1–11. Bibcode:2010PalOc..25.3210S. doi:10.1029/2009PA001738. hdl:11577/2447521. Retrieved 18 May 2023.
  14. Boscolo Galazzo, F.; Giusberti, L.; Luciani, V.; Thomas, E. (15 May 2013). "Paleoenvironmental changes during the Middle Eocene Climatic Optimum (MECO) and its aftermath: The benthic foraminiferal record from the Alano section (NE Italy)". Palaeogeography, Palaeoclimatology, Palaeoecology. 378: 22–35. Bibcode:2013PPP...378...22B. doi:10.1016/j.palaeo.2013.03.018. ISSN 0031-0182. Retrieved 24 December 2023.
  15. Moebius, Iris; Friedrich, Oliver; Scher, Howie D. (1 July 2014). "Changes in Southern Ocean bottom water environments associated with the Middle Eocene Climatic Optimum (MECO)". Palaeogeography, Palaeoclimatology, Palaeoecology. 405: 16–27. Bibcode:2014PPP...405...16M. doi:10.1016/j.palaeo.2014.04.004. Retrieved 24 December 2023 via Elsevier Science Direct.
  16. Luciani, Valeria; Giusberti, Luca; Agnini, Claudia; Fornaciari, Eliana; Rio, Domenico; Spofforth, David J. A.; Pälike, Heiko (1 June 2016). "Ecological and evolutionary response of Tethyan planktonic foraminifera to the middle Eocene climatic optimum (MECO) from the Alano section (NE Italy)". Palaeogeography, Palaeoclimatology, Palaeoecology. 292 (1): 82–95. doi:10.1016/j.palaeo.2010.03.029. ISSN 0031-0182. Retrieved 24 December 2023 via Elsevier Science Direct.
  17. Cornaggia, Flaminia; Bernardini, Simone; Giorgioni, Martino; Silva, Gabriel L. X.; Nagy, André Istvan M.; Jovane, Luigi (21 April 2020). "Abyssal oceanic circulation and acidification during the Middle Eocene Climatic Optimum (MECO)". Scientific Reports. 10 (1): 6674. Bibcode:2020NatSR..10.6674C. doi:10.1038/s41598-020-63525-3. ISSN 2045-2322. PMC 7174310. PMID 32317709.
  18. Pearson, Paul N. (5 November 2010). "Increased Atmospheric CO 2 During the Middle Eocene". Science. 330 (6005): 763–764. doi:10.1126/science.1197894. ISSN 0036-8075. PMID 21051620. S2CID 20253252. Retrieved 24 December 2023.
  19. van der Boon, Annique; Kuiper, Klaudia F.; van der Ploeg, Robin; Cramwinckel, Margot J.; Honarmand, Maryam; Sluijs, Appy; Krijgsman, Wout (18 January 2021). "Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up". Climate of the Past. 17 (1): 229–239. Bibcode:2021CliPa..17..229V. doi:10.5194/cp-17-229-2021. ISSN 1814-9332. Retrieved 24 December 2023.
  20. van der Ploeg, Robin; Selby, David; Cramwinckel, Margot J.; Li, Yang; Bohaty, Steven M.; Middelburg, Jack J.; Sluijs, Appy (23 July 2018). "Middle Eocene greenhouse warming facilitated by diminished weathering feedback". Nature Communications. 9 (1): 2877. Bibcode:2018NatCo...9.2877V. doi:10.1038/s41467-018-05104-9. ISSN 2041-1723. PMC 6056486. PMID 30038400.
  21. Krause, Alexander J.; Sluijs, Appy; van der Ploeg, Robin; Lenton, Timothy M.; Pogge von Strandmann, Philip A. E. (31 July 2023). "Enhanced clay formation key in sustaining the Middle Eocene Climatic Optimum". Nature Geoscience. 16 (8): 730–738. Bibcode:2023NatGe..16..730K. doi:10.1038/s41561-023-01234-y. ISSN 1752-0908. PMC 10409649. PMID 37564379.
  22. Westerhold, Thomas; Röhl, Ursula (12 November 2013). "Orbital pacing of Eocene climate during the Middle Eocene Climate Optimum and the chron C19r event: Missing link found in the tropical western Atlantic". Geochemistry, Geophysics, Geosystems. 14 (11): 4811–4825. Bibcode:2013GGG....14.4811W. doi:10.1002/ggge.20293. ISSN 1525-2027. S2CID 130604287. Retrieved 24 December 2023.
  23. Giorgioni, Martino; Jovane, Luigi; Rego, Eric S.; Rodelli, Daniel; Frontalini, Fabrizio; Coccioni, Rodolfo; Catanzariti, Rita; Özcan, Ercan (27 June 2019). "Carbon cycle instability and orbital forcing during the Middle Eocene Climatic Optimum". Scientific Reports. 9 (1): 9357. Bibcode:2019NatSR...9.9357G. doi:10.1038/s41598-019-45763-2. ISSN 2045-2322. PMC 6597698. PMID 31249387.
  24. Jovane, L.; Florindo, F.; Coccioni, R.; Dinares-Turell, J.; Marsili, A.; Monechi, S.; Roberts, A. P.; Sprovieri, M. (1 March 2007). "The middle Eocene climatic optimum event in the Contessa Highway section, Umbrian Apennines, Italy". Geological Society of America Bulletin. 119 (3–4): 413–427. Bibcode:2007GSAB..119..413J. doi:10.1130/B25917.1. ISSN 0016-7606. Retrieved 24 December 2023.
  25. Boscolo Galazzo, Flavia; Thomas, Ellen; Giusberti, Luca (1 January 2015). "Benthic foraminiferal response to the Middle Eocene Climatic Optimum (MECO) in the South-Eastern Atlantic (ODP Site 1263)". Palaeogeography, Palaeoclimatology, Palaeoecology. 417: 432–444. Bibcode:2015PPP...417..432B. doi:10.1016/j.palaeo.2014.10.004. Retrieved 19 November 2023.
  26. Boscolo Galazzo, F.; Thomas, E.; Pagani, M.; Warren, C.; Luciani, V.; Giusberti, L. (6 November 2014). "The middle Eocene climatic optimum (MECO): A multiproxy record of paleoceanographic changes in the southeast Atlantic (ODP Site 1263, Walvis Ridge)". Paleoceanography and Paleoclimatology. 29 (12): 1143–1161. Bibcode:2014PalOc..29.1143B. doi:10.1002/2014PA002670. hdl:11577/3068900. ISSN 0883-8305. Retrieved 24 December 2023.
  27. Tomiya, Susumu; Morris, Zachary S. (15 May 2020). "Reidentification of Late Middle Eocene "Uintacyon" from the Galisteo Formation (New Mexico, U.s.a.) as an Early Beardog (Mammalia, Carnivora, Amphicyonidae)". Breviora. 567 (1): 1. doi:10.3099/0006-9698-567.1.1. ISSN 0006-9698. Retrieved 24 December 2023.
  28. Poust, Ashley W.; Barrett, Paul Z.; Tomiya, Susumu (12 October 2022). "An early nimravid from California and the rise of hypercarnivorous mammals after the middle Eocene climatic optimum". Biology Letters. 18 (10). doi:10.1098/rsbl.2022.0291. ISSN 1744-957X. PMC 9554728.
  29. Fernández, Damián A.; Palazzesi, Luis; González Estebenet, M. Sol; Tellería, M. Cristina; Barreda, Viviana D. (9 February 2021). "Impact of mid Eocene greenhouse warming on America's southernmost floras". Communications Biology. 4 (1): 1–9. doi:10.1038/s42003-021-01701-5. hdl:11336/137904. ISSN 2399-3642. Retrieved 30 December 2023.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.