Prof. Nicholas Mark Harrison | |
---|---|
Born | [1] | 5 November 1964
Nationality | British |
Alma mater | University College London |
Known for | Density Functional Theory Crystal |
Scientific career | |
Fields | Physicist |
Institutions | Imperial College London Daresbury Laboratory |
Thesis | The Effects of Substitutional Disorder on the Electronic Structure of Alloys (1990) |
Doctoral advisor | Robin Jordan Paul Durham |
Website | www www |
Nicholas Harrison FRSC FinstP (born 5 November 1964) is an English theoretical physicist known for his work on developing theory and computational methods for discovering and optimising advanced materials. He is the Professor of Computational Materials Science in the Department of Chemistry at Imperial College London[2] where he is co-director of the Institute of Molecular Science and Engineering.[3]
Education
Harrison was educated at University College London and the University of Birmingham, graduating with a BSc in Physics in 1986 and a PhD in Theoretical Physics in 1989. He performed the research that led to his PhD within the Theory and Computational Science department at Daresbury Laboratory.
Career
Nicholas Mark Harrison was born in Streetly, Sutton Coldfield, in the United Kingdom. His father was a manager at Lloyds Bank. He took a degree in physics at University College London and the University of Birmingham after which he was appointed as a research scientist at Daresbury Laboratory, spending a year in 1993 as a visiting scientist at Pacific Northwest National Laboratory. In 1994 he was appointed head of the Computational Materials Science Group at Daresbury Laboratory. In 2000 he became the Professor of Computational Materials Science at Imperial College London. He was elected a Fellow of the Institute of Physics in 2004 and a Fellow of the Royal Society of Chemistry in 2008. He is currently a co-director of the Institute for Molecular Science and Engineering at Imperial College London.
Research
Harrison has authored or co-authored a wide range of articles [4]
Harrison's research career started with his PhD, which was concerned with developing a quantitative and predictive theory of the electronic states in substitutionally disordered systems. Harrison has furthered the practical use of quantum theory for predictive calculations in materials discovery and optimisation. He has developed methods for robust and efficient calculations on functional materials in which strong electronic interactions are dominant and used them to study processes in previously poorly understood materials such as transition metal oxides, [5] [6] oxide interfaces, [7] [8] [9] [10] and functional materials [11] [12] [13] [14] [15] [16] .[17] In doing so he has made significant contributions to the understanding of catalysis and photocatalysis at surfaces, the stability of polar surfaces, spin dependent transport in low dimensional systems, high temperature magnetism in organic and metal-organic materials and the thermodynamics of energy storage materials [18] [19] [20] [21] [22] [23] .[24] The techniques he has developed have consistently extended the state of the art and are now used world-wide in both academic and commercial research programmes.
References
- ↑ https://www.linkedin.com/in/NicholasMHarrison/
- ↑ "Computational Materials Science".
- ↑ "Institute for Molecular Science and Engineering".
- ↑ "Publications of Prof. Nicholas M Harrison".
- ↑ Towler, M. D.; Allan, N. L.; Harrison, N. M.; Saunders, V. R.; Mackrodt, W. C.; Aprà, E. (1994). "Ab initio study of MnO and NiO". Physical Review B. 50 (8): 5041–5054. Bibcode:1994PhRvB..50.5041T. doi:10.1103/PhysRevB.50.5041. hdl:10044/1/11023. ISSN 0163-1829. PMID 9976841. S2CID 5445519.
- ↑ Harrison, N. M.; Saunders, V. R.; Dovesi, R.; Mackrodt, W. C. (1998). "Transition metal materials: a first principles approach to the electronic structure of the insulating phase" (PDF). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 356 (1735): 75–88. Bibcode:1998RSPTA.356...75H. doi:10.1098/rsta.1998.0150. hdl:10044/1/621. ISSN 1364-503X. S2CID 41900327.
- ↑ Lindan, Philip J. D.; Harrison, N. M.; Gillan, M. J. (1998). "Mixed Dissociative and Molecular Adsorption of Water on the Rutile (110) Surface" (PDF). Physical Review Letters. 80 (4): 762–765. Bibcode:1998PhRvL..80..762L. doi:10.1103/PhysRevLett.80.762. ISSN 0031-9007.
- ↑ Harrison, N. M.; Wang, X.-G.; Muscat, J.; Scheffler, M. (1999). "The influence of soft vibrational modes on our understanding of oxide surface structure". Faraday Discussions. 114: 305–312. Bibcode:1999FaDi..114..305H. doi:10.1039/a906386b. hdl:10044/1/11021. ISSN 1359-6640.
- ↑ Koudriachova, Marina V.; Harrison, Nicholas M.; de Leeuw, Simon W. (2001). "Effect of Diffusion on Lithium Intercalation in Titanium Dioxide" (PDF). Physical Review Letters. 86 (7): 1275–1278. Bibcode:2001PhRvL..86.1275K. doi:10.1103/PhysRevLett.86.1275. ISSN 0031-9007. PMID 11178062.
- ↑ Doll, K.; Saunders, V. R.; Harrison, N. M. (2001). "Analytical Hartree-Fock gradients for periodic systems". International Journal of Quantum Chemistry. 82 (1): 1–13. arXiv:cond-mat/0011285. doi:10.1002/1097-461X(2001)82:1<1::AID-QUA1017>3.0.CO;2-W. ISSN 0020-7608. S2CID 16930758.
- ↑ Dubrovinsky, L. S.; Dubrovinskaia, N. A.; Swamy, V.; Muscat, J.; Harrison, N. M.; Ahuja, R.; Holm, B.; Johansson, B. (2001). "Materials science: The hardest known oxide". Nature. 410 (6829): 653–654. Bibcode:2001Natur.410..653D. doi:10.1038/35070650. hdl:10044/1/11018. ISSN 0028-0836. PMID 11287944. S2CID 4365291.
- ↑ Wander, A.; Schedin, F.; Steadman, P.; Norris, A.; McGrath, R.; Turner, T. S.; Thornton, G.; Harrison, N. M. (2001). "Stability of Polar Oxide Surfaces" (PDF). Physical Review Letters. 86 (17): 3811–3814. Bibcode:2001PhRvL..86.3811W. doi:10.1103/PhysRevLett.86.3811. ISSN 0031-9007. PMID 11329330. S2CID 9873012.
- ↑ Muscat, J.; Wander, A.; Harrison, N.M. (2001). "On the prediction of band gaps from hybrid functional theory". Chemical Physics Letters. 342 (3–4): 397–401. Bibcode:2001CPL...342..397M. doi:10.1016/S0009-2614(01)00616-9. ISSN 0009-2614.
- ↑ Schmidt, M.; Ratcliff, W.; Radaelli, P. G.; Refson, K.; Harrison, N. M.; Cheong, S. W. (2004). "Spin Singlet Formation inMgTi2O4: Evidence of a Helical Dimerization Pattern". Physical Review Letters. 92 (5): 056402. arXiv:cond-mat/0308101. Bibcode:2004PhRvL..92e6402S. doi:10.1103/PhysRevLett.92.056402. ISSN 0031-9007. PMID 14995323. S2CID 11008921.
- ↑ Lindsay, R.; Wander, A.; Ernst, A.; Montanari, B.; Thornton, G.; Harrison, N. M. (2005). "Revisiting the Surface Structure ofTiO2(110): A Quantitative low-Energy Electron Diffraction Study". Physical Review Letters. 94 (24): 246102. Bibcode:2005PhRvL..94x6102L. doi:10.1103/PhysRevLett.94.246102. hdl:10044/1/594. ISSN 0031-9007.
- ↑ Pisani, L.; Chan, J. A.; Montanari, B.; Harrison, N. M. (2007). "Electronic structure and magnetic properties of graphitic ribbons". Physical Review B. 75 (6): 064418. arXiv:cond-mat/0611344. Bibcode:2007PhRvB..75f4418P. doi:10.1103/PhysRevB.75.064418. ISSN 1098-0121. S2CID 30774868.
- ↑ Liborio, Leandro; Harrison, Nicholas (2008). "Thermodynamics of oxygen defective Magnéli phases in rutile: A first-principles study". Physical Review B. 77 (10): 104104. Bibcode:2008PhRvB..77j4104L. doi:10.1103/PhysRevB.77.104104. hdl:10044/1/10735. ISSN 1098-0121.
- ↑ Pisani, L; Montanari, B; Harrison, N M (2008). "A defective graphene phase predicted to be a room temperature ferromagnetic semiconductor". New Journal of Physics. 10 (3): 033002. arXiv:0710.0957. Bibcode:2008NJPh...10c3002P. doi:10.1088/1367-2630/10/3/033002. ISSN 1367-2630. S2CID 119263915.
- ↑ Warner, Jamie H.; Rümmeli, Mark H.; Ge, Ling; Gemming, Thomas; Montanari, Barbara; Harrison, Nicholas M.; Büchner, Bernd; Briggs, G. Andrew D. (2009). "Structural transformations in graphene studied with high spatial and temporal resolution". Nature Nanotechnology. 4 (8): 500–504. Bibcode:2009NatNa...4..500W. doi:10.1038/nnano.2009.194. ISSN 1748-3387. PMID 19662011.
- ↑ Bernasconi, Leonardo; Tomić, Stanko; Ferrero, Mauro; Rérat, Michel; Orlando, Roberto; Dovesi, Roberto; Harrison, Nicholas M. (2011). "First-principles optical response of semiconductors and oxide materials". Physical Review B. 83 (19): 195325. Bibcode:2011PhRvB..83s5325B. doi:10.1103/PhysRevB.83.195325. hdl:2318/131231. ISSN 1098-0121. S2CID 121125924.
- ↑ Liborio, Leandro M.; Bailey, Christine L.; Mallia, Giuseppe; Tomić, Stanko; Harrison, Nicholas M. (2011). "Chemistry of defect induced photoluminescence in chalcopyrites: The case of CuAlS2". Journal of Applied Physics. 109 (2): 023519–023519–9. Bibcode:2011JAP...109b3519L. doi:10.1063/1.3544206. hdl:10044/1/9925. ISSN 0021-8979.
- ↑ Robertson, Alex W.; Montanari, Barbara; He, Kuang; Allen, Christopher S.; Wu, Yimin A.; Harrison, Nicholas M.; Kirkland, Angus I.; Warner, Jamie H. (2013). "Structural Reconstruction of the Graphene Monovacancy". ACS Nano. 7 (5): 4495–4502. doi:10.1021/nn401113r. ISSN 1936-0851. PMID 23590499.
- ↑ Serri, Michele; Wu, Wei; Fleet, Luke R.; Harrison, Nicholas M.; Hirjibehedin, Cyrus F.; Kay, Christopher W.M.; Fisher, Andrew J.; Aeppli, Gabriel; Heutz, Sandrine (2014). "High-temperature antiferromagnetism in molecular semiconductor thin films and nanostructures". Nature Communications. 5: 3079. Bibcode:2014NatCo...5.3079S. doi:10.1038/ncomms4079. ISSN 2041-1723. PMC 3941018. PMID 24445992.
- ↑ Zou, Bin; Walker, Clementine; Wang, Kai; Tileli, Vasiliki; Shaforost, Olena; Harrison, Nicholas M.; Klein, Norbert; Alford, Neil M.; Petrov, Peter K. (2016). "Growth of Epitaxial Oxide Thin Films on Graphene". Scientific Reports. 6 (1): 31511. Bibcode:2016NatSR...631511Z. doi:10.1038/srep31511. ISSN 2045-2322. PMC 4981861. PMID 27515496.