Original author(s) | Laurent Perron |
---|---|
Developer(s) | Google Optimization team[1] |
Initial release | September 15, 2010 |
Stable release | v9.4.1874[2]
/ August 12, 2022 |
Repository | github |
Written in | C++ |
Operating system | Linux, macOS, Microsoft Windows |
Type | Library |
License | Apache License 2.0 |
Website | developers |
Google OR-Tools is a free and open-source software suite developed by Google for solving linear programming (LP), mixed integer programming (MIP), constraint programming (CP), vehicle routing (VRP), and related optimization problems.[3][4]
OR-Tools is a set of components written in C++ but provides wrappers for Java, .NET and Python.
It is distributed under the Apache License 2.0.[5]
History
OR-Tools was created by Laurent Perron in 2011.[6]
In 2014, Google's open source linear programming solver, GLOP, was released as part of OR-Tools.[1]
The CP-SAT solver[7] bundled with OR-Tools won a total of eleven gold medals between 2018 and 2020 in the MiniZinc Challenge,[8] an international constraint programming competition.
Features
The OR-Tools supports a variety of programming languages, including:
- Object-oriented interfaces for C++[9]
- A Java wrapper package[10]
- A .NET and .NET Framework wrapper package[11]
- A Python wrapper package[12]
OR-Tools supports a wide range of problem types,[13][3] among them:
- Assignment problem[14][15]
- Linear programming
- Mixed-integer programming[16]
- Constraint programming[7]
- Vehicle routing problem[14][17]
- Network flow algorithms
It supports the FlatZinc modeling language.[18]
See also
References
- 1 2 "Sudoku, Linear Optimization, and the Ten Cent Diet". ai.googleblog.com.
- ↑ "Release v9.4". github.com.
- 1 2 "Google OR-Tools a guide". medium.com. February 24, 2019.
- ↑ "We help you implement OR-tools technology". solvice.com.
- ↑ "LICENSE-2.0.txt". github.com.
- ↑ Perron, Laurent (July 1, 2011). "Operations Research and Constraint Programming at Google". Lee J. (Eds) Principles and Practice of Constraint Programming – CP 2011. Lecture Notes in Computer Science. 6876: 2. doi:10.1007/978-3-642-23786-7_2. ISBN 978-3-642-23786-7. S2CID 38166333.
- 1 2 "How the CP-SAT solver works". xiang.dev. April 25, 2020.
- ↑ "The MiniZinc Challenge". minizinc.org.
- ↑ "Homebrew package". formulae.brew.sh.
- ↑ "com.google.ortools:ortools-java". mvnrepository.com.
- ↑ "Google.OrTools". nuget.org.
- ↑ "ortools". pypi.org.
- ↑ "OR-Tools introduction". Google Developers.
- 1 2 "Application of Google OR-Tools". kaggle.com.
- ↑ "Google OR-Tools. Business value and potential". freshcodeit.com.
- ↑ Louat, Christophe (2009). Etude et mise en œuvre de stratégies de coupes efficaces pour des problèmes entiers mixtes 0-1 (PhD). Vol. 1. Université de Versailles Saint-Quentin-en-Yvelines. p. 144.
- ↑ "Routing use case". activimetrics.com.
- ↑ "Software with FlatZinc implementations". minizinc.org.
Bibliography
- Kruk, Serge (February 26, 2018). Practical Python AI Projects: Mathematical Models of Optimization Problems with Google OR-Tools (1st ed.). O'Reilly Media. ISBN 9781484234235.
- Da Col, Giacomo; Teppan, Eric C. (2019). "Google vs IBM: A Constraint Solving Challenge on the Job-Shop Scheduling Problem". Electronic Proceedings in Theoretical Computer Science. Open Publishing Association. 306: 259-265. doi:10.4204/eptcs.306.30. ISSN 2075-2180. S2CID 202660711.
- Li, Mengyun; Chow, Joseph (April 2021). "School Bus Routing Problem with a Mixed Ride, Mixed Load, and Heterogeneous Fleet". Transportation Research Record Journal of the Transportation Research Board. 2675 (7): 467-479. doi:10.1177/03611981211016860. S2CID 237618523.