In statistics, the order of a kernel is the degree of the first non-zero moment of a kernel.[1]

Definitions

The literature knows two major definitions of the order of a kernel:

Definition 1

Let be an integer. Then, is a kernel of order if the functions are integrable and satisfy [2]

Definition 2

References

  1. Li, Qi; Racine, Jeffrey Scott (2011), "1.11 Higher Order Kernel Functions", Nonparametric Econometrics: Theory and Practice, Princeton University Press, ISBN 9781400841066
  2. Tsybakov, Alexandre B. (2009). Introduction to Nonparametric Econometrics. New York, NY: Springer. p. 5. ISBN 9780387790510.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.