PLEC
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesPLEC, EBS1, EBSMD, EBSND, EBSO, EBSOG, EBSPA, HD1, LGMD2Q, PCN, PLEC1, PLEC1b, PLTN, plectin, LGMDR17, EBS5D, EBS5C, EBS5B, EBS5A
External IDsOMIM: 601282 MGI: 1277961 HomoloGene: 384 GeneCards: PLEC
Orthologs
SpeciesHumanMouse
Entrez

5339

18810

Ensembl

ENSG00000178209

ENSMUSG00000022565

UniProt

Q15149

Q9QXS1

RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)Chr 8: 143.92 – 143.98 MbChr 15: 76.06 – 76.12 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Plectin is a giant protein found in nearly all mammalian cells which acts as a link between the three main components of the cytoskeleton: actin microfilaments, microtubules and intermediate filaments.[5] In addition, plectin links the cytoskeleton to junctions found in the plasma membrane that structurally connect different cells. By holding these different networks together, plectin plays an important role in maintaining the mechanical integrity and viscoelastic properties of tissues.[6]

Structure

Plectin can exist in cells as several alternatively-spliced isoforms, all around 500 kDa and >4000 amino acids.[7][8] The structure of plectin is thought to be a dimer consisting of a central coiled coil of alpha helices connecting two large globular domains (one at each terminus). These globular domains are responsible for connecting plectin to its various cytoskeletal targets. The carboxy-terminal domain is made of 6 highly homologous repeating regions. The subdomain between regions five and six of this domain is known to connect to the intermediate filaments cytokeratin and vimentin. At the opposite end of the protein, in the N-terminal domain, a region has been defined as responsible for binding to actin.[9] In 2004, the exact crystal structure of this actin-binding domain (ABD) was determined in mice and shown to be composed of two calponin homology (CH) domains.[10] Plectin is expressed in nearly all mammalian tissues. In cardiac muscle and skeletal muscle, plectin is localized to specialized entities known as Z-discs.[11] Plectin binds several proteins, including vinculin, DES,[12] actin.,[6][13] fodrin,[6][13] microtubule-associating proteins,[6][13] nuclear laminin B.,[6][13] SPTAN1,[14][15] vimentin[14][15][16] and ITGB4.[6][13]

Function

Studies employing a plectin knockout mouse have shed light on the functions of plectin. Pups died 2–3 days after birth, and these mice exhibited marked skin abnormalities, including degeneration of keratinocytes. Skeletal and cardiac muscle tissues were also significantly affected. Cardiac intercalated discs were disintegrated and sarcomeres were irregularly shapen, and intracellular accumulation of aberrant isolated myofibrillar bundles and Z-disc components was also observed. Expression of vinculin in muscle cells was strikingly down-regulated.[17] Through the use of gold-immunoelectron microscopy, immunoblotting and immunofluorescence experiments plectin has been found to associate with all three major components of the cytoskeleton. In muscle, plectin binds to the periphery of Z-discs,[12] and along with the intermediate filament protein desmin, may form lateral linkages among neighboring Z-discs. This interaction between plectin and desmin intermediate filaments also appears to facilitate the close association of myofibrils and mitochondria, both at Z-discs and along the remainder the sarcomere.[18] Plectin also functions to link cytoskeleton to intercellular junctions, such as desmosomes and hemidesmosomes, which link intermediate filament networks between cells. Plectin has been revealed to localize to the desmosomes and in vitro studies have shown that it can form bridges between the desmosome protein, desmoplakin and intermediate filaments.[19] In hemidesmosomes plectin has been shown to interact with the integrin β4 subunits of the hemidesmosome plaque and function in a clamp-like manner to link the intermediate filament cytokeratin to the junction.[20]

Clinical significance

Mutations in PLEC have been associated with epidermolysis bullosa simplex with muscular dystrophy.[21] A missense variant of PLEC has been recently proposed as a cause of atrial fibrillation in some populations.[22] Isolated left ventricular non-compaction accompanying epidermolysis bullosa simplex with muscular dystrophy was also noted.[23] Plectin has been proposed as a biomarker for pancreatic cancer.[24][25] Although normally a cytoplasmic protein, plectin is expressed on the cell membrane in pancreatic ductal adenocarcinoma (PDAC) and can therefore be used to target PDAC cells.[24]

See also

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000178209 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022565 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Svitkina TM, Verkhovsky AB, Borisy GG (Nov 1996). "Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton". The Journal of Cell Biology. 135 (4): 991–1007. doi:10.1083/jcb.135.4.991. PMC 2133373. PMID 8922382.
  6. 1 2 3 4 5 6 Wiche G (Sep 1998). "Role of plectin in cytoskeleton organization and dynamics" (abstract). Journal of Cell Science. 111 (17): 2477–86. doi:10.1242/jcs.111.17.2477. PMID 9701547.
  7. "Archived copy". Archived from the original on 2016-03-05. Retrieved 2015-04-13.{{cite web}}: CS1 maint: archived copy as title (link)
  8. Zong, N. C.; Li, H; Li, H; Lam, M. P.; Jimenez, R. C.; Kim, C. S.; Deng, N; Kim, A. K.; Choi, J. H.; Zelaya, I; Liem, D; Meyer, D; Odeberg, J; Fang, C; Lu, H. J.; Xu, T; Weiss, J; Duan, H; Uhlen, M; Yates Jr, 3rd; Apweiler, R; Ge, J; Hermjakob, H; Ping, P (2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC 4076475. PMID 23965338.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  9. Winter L, Wiche G (Jan 2013). "The many faces of plectin and plectinopathies: pathology and mechanisms". Acta Neuropathologica. 125 (1): 77–93. doi:10.1007/s00401-012-1026-0. PMID 22864774. S2CID 12429741.
  10. Sevcík J, Urbániková L, Kost'an J, Janda L, Wiche G (May 2004). "Actin-binding domain of mouse plectin. Crystal structure and binding to vimentin". European Journal of Biochemistry. 271 (10): 1873–84. doi:10.1111/j.1432-1033.2004.04095.x. PMID 15128297.
  11. Zernig G, Wiche G (Jul 1985). "Morphological integrity of single adult cardiac myocytes isolated by collagenase treatment: immunolocalization of tubulin, microtubule-associated proteins 1 and 2, plectin, vimentin, and vinculin". European Journal of Cell Biology. 38 (1): 113–22. PMID 2992982.
  12. 1 2 Hijikata T, Murakami T, Imamura M, Fujimaki N, Ishikawa H (Mar 1999). "Plectin is a linker of intermediate filaments to Z-discs in skeletal muscle fibers". Journal of Cell Science. 112 (6): 867–76. doi:10.1242/jcs.112.6.867. PMID 10036236.
  13. 1 2 3 4 5 Steinböck FA, Wiche G (Feb 1999). "Plectin: a cytolinker by design". Biological Chemistry. 380 (2): 151–8. doi:10.1515/BC.1999.023. PMID 10195422. S2CID 46726381.
  14. 1 2 Herrmann H, Wiche G (Jan 1987). "Plectin and IFAP-300K are homologous proteins binding to microtubule-associated proteins 1 and 2 and to the 240-kilodalton subunit of spectrin". The Journal of Biological Chemistry. 262 (3): 1320–5. doi:10.1016/S0021-9258(19)75789-5. PMID 3027087.
  15. 1 2 Brown MJ, Hallam JA, Liu Y, Yamada KM, Shaw S (Jul 2001). "Cutting edge: integration of human T lymphocyte cytoskeleton by the cytolinker plectin". Journal of Immunology. 167 (2): 641–5. doi:10.4049/jimmunol.167.2.641. PMID 11441066.
  16. Favre B, Schneider Y, Lingasamy P, Bouameur JE, Begré N, Gontier Y, Steiner-Champliaud MF, Frias MA, Borradori L, Fontao L (May 2011). "Plectin interacts with the rod domain of type III intermediate filament proteins desmin and vimentin". European Journal of Cell Biology. 90 (5): 390–400. doi:10.1016/j.ejcb.2010.11.013. PMID 21296452.
  17. Andrä K, Lassmann H, Bittner R, Shorny S, Fässler R, Propst F, Wiche G (Dec 1997). "Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture". Genes & Development. 11 (23): 3143–56. doi:10.1101/gad.11.23.3143. PMC 316746. PMID 9389647.
  18. Reipert S, Steinböck F, Fischer I, Bittner RE, Zeöld A, Wiche G (Nov 1999). "Association of mitochondria with plectin and desmin intermediate filaments in striated muscle". Experimental Cell Research. 252 (2): 479–91. doi:10.1006/excr.1999.4626. PMID 10527638.
  19. Huber O (Sep 2003). "Structure and function of desmosomal proteins and their role in development and disease". Cellular and Molecular Life Sciences. 60 (9): 1872–90. doi:10.1007/s00018-003-3050-7. PMID 14523549. S2CID 11557417.
  20. Sonnenberg A, Liem RK (Jun 2007). "Plakins in development and disease". Experimental Cell Research. 313 (10): 2189–203. doi:10.1016/j.yexcr.2007.03.039. PMID 17499243.
  21. Bardhan, Ajoy; Bruckner-Tuderman, Leena; Chapple, Iain L. C.; Fine, Jo-David; Harper, Natasha; Has, Cristina; Magin, Thomas M.; Marinkovich, M. Peter; Marshall, John F.; McGrath, John A.; Mellerio, Jemima E. (2020-09-24). "Epidermolysis bullosa". Nature Reviews Disease Primers. 6 (1): 78. doi:10.1038/s41572-020-0210-0. ISSN 2056-676X. PMID 32973163. S2CID 221861310.
  22. Thorolfsdottir, Rosa B.; Sveinbjornsson, Gardar; Sulem, Patrick; Helgadottir, Anna; Gretarsdottir, Solveig; Benonisdottir, Stefania; Magnusdottir, Audur; Davidsson, Olafur B.; Rajamani, Sridharan; Roden, Dan M.; Darbar, Dawood; Pedersen, Terje R.; Sabatine, Marc S.; Jonsdottir, Ingileif; Arnar, David O.; Thorsteinsdottir, Unnur; Gudbjartsson, Daniel F.; Holm, Hilma; Stefansson, Kari (2017). "A Missense Variant in PLEC Increases Risk of Atrial Fibrillation". Journal of the American College of Cardiology. 70 (17): 2157–2168. doi:10.1016/j.jacc.2017.09.005. PMC 5704994. PMID 29050564.
  23. Villa CR, Ryan TD, Collins JJ, Taylor MD, Lucky AW, Jefferies JL (Feb 2015). "Left ventricular non-compaction cardiomyopathy associated with epidermolysis bullosa simplex with muscular dystrophy and PLEC1 mutation". Neuromuscular Disorders. 25 (2): 165–8. doi:10.1016/j.nmd.2014.09.011. PMID 25454730. S2CID 25193440.
  24. 1 2 Kelly KA, Bardeesy N, Anbazhagan R, Gurumurthy S, Berger J, Alencar H, Depinho RA, Mahmood U, Weissleder R (Apr 2008). "Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma". PLOS Medicine. 5 (4): e85. doi:10.1371/journal.pmed.0050085. PMC 2292750. PMID 18416599.
  25. Bausch D, Thomas S, Mino-Kenudson M, Fernández-del CC, Bauer TW, Williams M, Warshaw AL, Thayer SP, Kelly KA (Jan 2011). "Plectin-1 as a novel biomarker for pancreatic cancer". Clinical Cancer Research. 17 (2): 302–9. doi:10.1158/1078-0432.CCR-10-0999. PMC 3044444. PMID 21098698.

Further reading

  1. Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (Oct 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–1053. doi:10.1161/CIRCRESAHA.113.301151. PMC 4076475. PMID 23965338.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.