PPAN | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | PPAN, BXDC3, SSF, SSF-1, SSF1, SSF2, peter pan homolog (Drosophila), peter pan homolog | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 607793 MGI: 2178445 HomoloGene: 5690 GeneCards: PPAN | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Suppressor of SWI4 1 homolog is a protein that in humans is encoded by the PPAN gene.[5][6]
The protein encoded by this gene is an evolutionarily conserved protein similar to yeast SSF1 as well as to the gene product of the Drosophila gene peter pan (PPAN). SSF1 is known to be involved in the second step of mRNA splicing. Both SSF1 and PPAN are essential for cell growth and proliferation. This gene was found to cotranscript with P2RY11/P2Y(11), an immediate downstream gene on the chromosome that encodes an ATP receptor. The chimeric transcripts of this gene and P2RY11 were found to be ubiquitously present and regulated during granulocytic differentiation. Exogenous expression of this gene was reported to reduce the anchorage-independent growth of some tumor cells.[6]
Although being involved in ribosome biogenesis, human PPAN is not merely localized in nucleoli, but also in mitochondria. Depletion of PPAN provokes apoptosis as observed by increased amounts of p53 and its target gene p21, BAX-driven depolarisation of mitochondria, cytochrome c release as well as caspase-dependent cleavage of PARP.[7] Recent studies revealed that PPAN participates in the regulation of mitochondrial homeostasis, presumably via modulation of autophagy.[8] Furthermore, PPAN is required for proper cycling of cells since down regulation of PPAN in cancer cells results in a p53-independent cell cycle arrest.[9]
One of the introns of PPAN encodes the Small nucleolar RNA SNORD105.[10]
References
- 1 2 3 GRCh38: Ensembl release 89: ENSG00000130810 - Ensembl, May 2017
- 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000004100 - Ensembl, May 2017
- ↑ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ↑ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ↑ Welch PJ, Marcusson EG, Li QX, Beger C, Krüger M, Zhou C, et al. (June 2000). "Identification and validation of a gene involved in anchorage-independent cell growth control using a library of randomized hairpin ribozymes". Genomics. 66 (3): 274–83. doi:10.1006/geno.2000.6230. PMID 10873382.
- 1 2 "Entrez Gene: PPAN peter pan homolog (Drosophila)".
- ↑ Pfister AS, Keil M, Kühl M (April 2015). "The Wnt Target Protein Peter Pan Defines a Novel p53-independent Nucleolar Stress-Response Pathway". The Journal of Biological Chemistry. 290 (17): 10905–18. doi:10.1074/jbc.M114.634246. PMC 4409253. PMID 25759387.
- ↑ Dannheisig, David P.; Beck, Eileen; Calzia, Enrico; Walther, Paul; Behrends, Christian; Pfister, Astrid S. (2019). "Loss of Peter Pan (PPAN) Affects Mitochondrial Homeostasis and Autophagic Flux". Cells. 8 (8): 894. doi:10.3390/cells8080894. PMC 6721654. PMID 31416196.
- ↑ Keil M, Meyer MT, Dannheisig DP, Maerz LD, Philipp M, Pfister AS (May 2019). "Loss of Peter Pan protein is associated with cell cycle defects and apoptotic events". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1866 (5): 882–895. doi:10.1016/j.bbamcr.2019.01.010. PMID 30716409.
- ↑ Vitali P, Royo H, Seitz H, Bachellerie JP, Hüttenhofer A, Cavaillé J (November 2003). "Identification of 13 novel human modification guide RNAs". Nucleic Acids Research. 31 (22): 6543–51. doi:10.1093/nar/gkg849. PMC 275545. PMID 14602913.
Further reading
- Communi D, Govaerts C, Parmentier M, Boeynaems JM (December 1997). "Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase". The Journal of Biological Chemistry. 272 (51): 31969–73. doi:10.1074/jbc.272.51.31969. PMID 9405388.
- Migeon JC, Garfinkel MS, Edgar BA (June 1999). "Cloning and characterization of peter pan, a novel Drosophila gene required for larval growth". Molecular Biology of the Cell. 10 (6): 1733–44. doi:10.1091/mbc.10.6.1733. PMC 25365. PMID 10359593.
- Suarez-Huerta N, Boeynaems JM, Communi D (August 2000). "Cloning, genomic organization, and tissue distribution of human Ssf-1". Biochemical and Biophysical Research Communications. 275 (1): 37–42. doi:10.1006/bbrc.2000.3259. PMID 10944437.
- Communi D, Suarez-Huerta N, Dussossoy D, Savi P, Boeynaems JM (May 2001). "Cotranscription and intergenic splicing of human P2Y11 and SSF1 genes". The Journal of Biological Chemistry. 276 (19): 16561–6. doi:10.1074/jbc.M009609200. PMID 11278528.
- Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, et al. (January 2002). "Directed proteomic analysis of the human nucleolus". Current Biology. 12 (1): 1–11. doi:10.1016/S0960-9822(01)00650-9. PMID 11790298. S2CID 14132033.
- Duhant X, Schandené L, Bruyns C, Gonzalez NS, Goldman M, Boeynaems JM, Communi D (July 2002). "Extracellular adenine nucleotides inhibit the activation of human CD4+ T lymphocytes". Journal of Immunology. 169 (1): 15–21. doi:10.4049/jimmunol.169.1.15. PMID 12077223.
- Scherl A, Couté Y, Déon C, Callé A, Kindbeiter K, Sanchez JC, et al. (November 2002). "Functional proteomic analysis of human nucleolus". Molecular Biology of the Cell. 13 (11): 4100–9. doi:10.1091/mbc.E02-05-0271. PMC 133617. PMID 12429849.
- Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, et al. (August 2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins". Proceedings of the National Academy of Sciences of the United States of America. 101 (33): 12130–5. Bibcode:2004PNAS..10112130B. doi:10.1073/pnas.0404720101. PMC 514446. PMID 15302935.
- Nousiainen M, Silljé HH, Sauer G, Nigg EA, Körner R (April 2006). "Phosphoproteome analysis of the human mitotic spindle". Proceedings of the National Academy of Sciences of the United States of America. 103 (14): 5391–6. Bibcode:2006PNAS..103.5391N. doi:10.1073/pnas.0507066103. PMC 1459365. PMID 16565220.
- Beausoleil SA, Villén J, Gerber SA, Rush J, Gygi SP (October 2006). "A probability-based approach for high-throughput protein phosphorylation analysis and site localization". Nature Biotechnology. 24 (10): 1285–92. doi:10.1038/nbt1240. PMID 16964243. S2CID 14294292.
- Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (November 2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID 17081983. S2CID 7827573.
- Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Molecular Systems Biology. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.