RCAN1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesRCAN1, ADAPT78, CSP1, DSC1, DSCR1, MCIP1, RCN1, regulator of calcineurin 1
External IDsOMIM: 602917 MGI: 1890564 HomoloGene: 3251 GeneCards: RCAN1
Orthologs
SpeciesHumanMouse
Entrez

1827

54720

Ensembl

ENSG00000159200

ENSMUSG00000022951

UniProt

P53805

Q9JHG6

RefSeq (mRNA)

NM_001081549
NM_019466

RefSeq (protein)

NP_001075018
NP_062339

Location (UCSC)Chr 21: 34.51 – 34.62 MbChr 16: 92.19 – 92.27 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Down syndrome critical region gene 1, also known as DSCR1, is a protein that in humans is encoded by the RCAN1 gene.[5]

Gene location and organization

DSCR1 in human is located at the centromeric border of the DSCR and encodes an inhibitor of calcineurin/ NFAT (nuclear factor activated T cells) signalling.[6]

DSCR1 genomic sequence of total 45 kb contain 7 exons and 6 introns , different cDNA analysis yield first four exons are alternative and code for two isoforms of 197 amino acids, and one isoform code for 171 amino acids which differ in their N terminal . While the rest of the 168 residues are common. There is also alternative promoter region with about 900 bp between exon 3 and 4 suggesting that the fourth isoform might be penetrated from another promoter.[7]

Function

The protein encoded by this gene interacts with calcineurin A and inhibits calcineurin-dependent signaling pathways of genetic transcription, possibly affecting central nervous system development. Three transcript variants encoding three different isoforms have been found for this gene.[5] In endothelial cells, VEGF stimulates RCAN1.4 expression which regulates gene expression, cell migration and tubular morphogenesis.[8]

Structure

DSCR1 Consist of putative functional motifs and calcineurin binding domain. DSCR1 contains two proline-rich SH3 binding domain, usually named proline-rich domain (PRD), which defines the protein family. SH3 domains or PRD are very important to allow the binding of the protein to endocytosis-related proteins such as ITSN1 and amphiphysin 1 and 2.[9]

Clinical significance

This gene is located in the minimal candidate region for the Down syndrome phenotype, and is overexpressed in the brain of Down syndrome fetuses. Chronic overexpression of this gene may lead to neurofibrillary tangles such as those associated with Alzheimer's disease.[5][10] RCAN1 helps coordinate whole-body metabolism and can be an important target in treatment of obesity.[11]

Associated diseases

Central nervous system

All Down syndrome (DS) patients develop neuropathological changes identical to the pathogenesis of Alzheimer's disease (AD) in middle age, such as neuritic plaques and neuronal loss. Therefore, DS patients are perfect models to study AD pathogenesis.[12] Chronic DSCR1 overexpression is related with DS and AD,[13] while its shortage is reported in Huntington’s disease.[14] DSCR1 expressed excessively in the Central Nervous System of embryos, and the protein is later overexpressed in brains of DS patients. However, neurotrophic peptide PACAP (or Pituitary adenylate cyclase-activating peptide) which is responsible for the development, differentiation, and survival, and various parts of memory and learning, targets RCAN1, a Down syndrome related gene, induces the expression of regulator of calcineurin 1, through activation of the PKA-CREB pathway, and this is important to understand the mechanisms of neural differentiation and aim for proper expression of RCAN1.[15]

Cancer

It is suggested that the reason patients with Down syndrome are less predisposed to certain cancers is due to the impact of this gene of reducing blood supply to tumour cells.[16] It is also proposed by epidemiological studies that DS patients are in greater risk of leukaemia, on the other hand they are at lower risk of cancer and other angiogenesis related diseases such as diabetic retinopathy and atherosclerosis, indicating that one or more trisomic genes on chromosome 21 is responsible for protecting DS patients against cancer, and this cancer defence could be a result of angiogenesis suppression.[16]

Interactions

DSCR1 has been shown to interact with Calcineurin.[17]

Hydrogen peroxide (H2O2) increases the overexpression of protein RCAN1. However, anti-oxidants and inhibitors of mitogen-activated protein kinases (MAPK) treatment block the increased expression of RCAN1 by H2O2. Demonstrating that the increased expression is a result of generating reactive oxygen species and activation of MAPK. Furthermore, phosphorylation is important to regulator RCAN1 protein expression. Because phosphorylation of RCAN1 expression by H2O2 increases of the half-life of the protein.[18]

See also

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000159200 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022951 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 "RCAN1 regulator of calcineurin 1 [ Homo sapiens (human) ]". Retrieved 2022-12-28.
  6. Arron JR, Winslow MM, Polleri A, Chang CP, Wu H, Gao X, et al. (June 2006). "NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21". Nature. 441 (7093): 595–600. Bibcode:2006Natur.441..595A. doi:10.1038/nature04678. PMID 16554754. S2CID 4428187.
  7. Pfister SC, Machado-Santelli GM, Han SW, Henrique-Silva F (September 2002). "Mutational analyses of the signals involved in the subcellular location of DSCR1". BMC Cell Biology. 3: 24. doi:10.1186/1471-2121-3-24. PMC 128833. PMID 12225619.
  8. Holmes K, Chapman E, See V, Cross MJ (July 2010). "VEGF stimulates RCAN1.4 expression in endothelial cells via a pathway requiring Ca2+/calcineurin and protein kinase C-delta". PLOS ONE. 5 (7): e11435. Bibcode:2010PLoSO...511435H. doi:10.1371/journal.pone.0011435. PMC 2897886. PMID 20625401.
  9. Keating DJ, Chen C, Pritchard MA (November 2006). "Alzheimer's disease and endocytic dysfunction: clues from the Down syndrome-related proteins, DSCR1 and ITSN1". Ageing Research Reviews. 5 (4): 388–401. doi:10.1016/j.arr.2005.11.001. PMID 16442855. S2CID 12867672.
  10. Martin KR, Corlett A, Dubach D, Mustafa T, Coleman HA, Parkington HC, et al. (July 2012). "Over-expression of RCAN1 causes Down syndrome-like hippocampal deficits that alter learning and memory". Human Molecular Genetics. 21 (13): 3025–41. doi:10.1093/hmg/dds134. PMID 22511596.
  11. Rotter, David; Peiris, Heshan; Grinsfelder, D. Bennett; Martin, Alyce M.; Burchfield, Jana; Parra, Valentina; Hull, Christi; Morales, Cyndi R.; Jessup, Claire F.; Matusica, Dusan; Parks, Brian W. (December 2018). "Regulator of Calcineurin 1 helps coordinate whole-body metabolism and thermogenesis". EMBO Reports. 19 (12): e44706. doi:10.15252/embr.201744706. ISSN 1469-3178. PMC 6280800. PMID 30389725.
  12. Sun X, Wu Y, Herculano B, Song W (2014-04-21). "RCAN1 overexpression exacerbates calcium overloading-induced neuronal apoptosis". PLOS ONE. 9 (4): e95471. Bibcode:2014PLoSO...995471S. doi:10.1371/journal.pone.0095471. PMC 3994074. PMID 24751678.
  13. Ermak G, Morgan TE, Davies KJ (October 2001). "Chronic overexpression of the calcineurin inhibitory gene DSCR1 (Adapt78) is associated with Alzheimer's disease". The Journal of Biological Chemistry. 276 (42): 38787–94. doi:10.1074/jbc.M102829200. PMID 11483593. S2CID 38420676.
  14. Ermak G, Hench KJ, Chang KT, Sachdev S, Davies KJ (May 2009). "Regulator of calcineurin (RCAN1-1L) is deficient in Huntington disease and protective against mutant huntingtin toxicity in vitro". The Journal of Biological Chemistry. 284 (18): 11845–53. doi:10.1074/jbc.M900639200. PMC 2673253. PMID 19270310.
  15. Lee EH, Kim SS, Lee S, Baek KH, Seo SR (August 2015). "Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) Targets Down Syndrome Candidate Region 1 (DSCR1/RCAN1) to control Neuronal Differentiation". The Journal of Biological Chemistry. 290 (34): 21019–31. doi:10.1074/jbc.M115.639476. PMC 4543660. PMID 26157140.
  16. 1 2 Baek KH, Zaslavsky A, Lynch RC, Britt C, Okada Y, Siarey RJ, et al. (June 2009). "Down's syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1". Nature. 459 (7250): 1126–30. Bibcode:2009Natur.459.1126B. doi:10.1038/nature08062. PMC 2724004. PMID 19458618.
  17. Fuentes JJ, Genescà L, Kingsbury TJ, Cunningham KW, Pérez-Riba M, Estivill X, de la Luna S (July 2000). "DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways". Human Molecular Genetics. 9 (11): 1681–90. doi:10.1093/hmg/9.11.1681. PMID 10861295.
  18. Kim SS, Seo SR (2013-01-29). "Hydrogen peroxide-induced MAPK activation causes the increase of RCAN1 (DSCR1) protein expression". Genes & Genomics. 35 (1): 111–116. doi:10.1007/s13258-013-0080-x. ISSN 1976-9571. S2CID 15858776.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.