A symmetric relation is a type of binary relation. An example is the relation "is equal to", because if a = b is true then b = a is also true. Formally, a binary relation R over a set X is symmetric if:[1]

where the notation aRb means that (a, b) ∈ R.

If RT represents the converse of R, then R is symmetric if and only if R = RT.

Symmetry, along with reflexivity and transitivity, are the three defining properties of an equivalence relation.[1]

Examples

In mathematics

Outside mathematics

  • "is married to" (in most legal systems)
  • "is a fully biological sibling of"
  • "is a homophone of"
  • "is co-worker of"
  • "is teammate of"

Relationship to asymmetric and antisymmetric relations

Symmetric and antisymmetric relations

By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b, then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").

Symmetric and antisymmetric (where the only way a can be related to b and b be related to a is if a = b) are actually independent of each other, as these examples show.

Mathematical examples
SymmetricNot symmetric
Antisymmetricequalitydivides, less than or equal to
Not antisymmetriccongruence in modular arithmetic// (integer division), most nontrivial permutations
Non-mathematical examples
SymmetricNot symmetric
Antisymmetricis the same person as, and is marriedis the plural of
Not antisymmetricis a full biological sibling ofpreys on

Properties

Number of n-element binary relations of different types
Elem­ents Any Transitive Reflexive Symmetric Preorder Partial order Total preorder Total order Equivalence relation
0111111111
1221211111
216134843322
3512171646429191365
465,5363,9944,0961,024355219752415
n 2n2 2n(n−1) 2n(n+1)/2 n
k=0
k!S(n, k)
n! n
k=0
S(n, k)
OEIS A002416 A006905 A053763 A006125 A000798 A001035 A000670 A000142 A000110

Note that S(n, k) refers to Stirling numbers of the second kind.

Notes

  1. If xRy, the yRx by symmetry, hence xRx by transitivity. The proof of xRyyRy is similar.

References

  1. 1 2 3 Biggs, Norman L. (2002). Discrete Mathematics. Oxford University Press. p. 57. ISBN 978-0-19-871369-2.
  2. Sloane, N. J. A. (ed.). "Sequence A006125". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.

See also

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.