In algebraic geometry, a Todorov surface is one of a class of surfaces of general type introduced by Todorov (1981) for which the conclusion of the Torelli theorem does not hold.
References
- Morrison, David R. (1988), "On the moduli of Todorov surfaces", Algebraic geometry and commutative algebra, vol. I, Tokyo: Kinokuniya, pp. 313–355, MR 0977767
- Todorov, Andrei N. (1981), "A construction of surfaces with pg = 1, q = 0 and 2 ≤ (K2) ≤ 8. Counterexamples of the global Torelli theorem.", Invent. Math., 63 (2): 287–304, doi:10.1007/BF01393879, MR 0610540
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.