trans,trans,trans-(1,5,9-Cyclododecatriene)nickel(0)
Names
IUPAC name
(1E,5E,9E)-cyclododeca-1,5,9-triene;nickel
Other names
all-trans-(1,5,9-Cyclododecatriene)nickel(0), Ni(ttt-cdt)
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/2C8H8.Ni/c2*1-2-4-6-8-7-5-3-1;/h2*1-2,7-8H2; checkY[pubchem]
    Key: AYHVBQBQROAZHP-UHFFFAOYSA-N checkY[pubchem]
  • InChI=1S/C12H18.Ni/c1-2-4-6-8-10-12-11-9-7-5-3-1;/h1-2,7-10H,3-6,11-12H2;/b2-1+,9-7+,10-8+;
    Key: RVXPUSSGELSUTI-CLDUCCMASA-N
  • C1/C=C/CC/C=C/CC/C=C/C1.[Ni]
Properties
C12H18Ni
Molar mass 220.96 g/mol
Appearance Red solid
Melting point 140 °C (284 °F; 413 K) (N2, decomposes)
Solubility soluble in diethyl ether
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Infobox references

trans,trans,trans-(1,5,9-Cyclododecatriene)nickel(0) a organonickel compound with the formula NiC12H18, better known as t-Ni(cdt). It is a 16-electron coordination complex featuring trigonal planar nickel(0) bound to the three alkene groups in the cyclododecatriene ligand.[1] X-ray structural analysis demonstrates that the three olefins adopt a propeller-like arrangement around the nickel atom center, making the structure chiral.[2] This extremely air-sensitive deep red solid was the first discovered Ni(0)-olefin complex.[3]

Preparation and properties

The complex is prepared by reduction of anhydrous nickel(II) acetylacetonate in ether in the presence of the triolefin:[4]

Ni(acac)2 + t-cdt + 2 Et2AlOEt → t-Ni(cdt) + 2 acacAlOEt + 2 C2H5

σ-Donating ligands such as carbon monoxide, isonitriles, phosphines, and hydrides can readily add onto t-Ni(cdt) to furnish tetrahedral 18-electron nickel complexes.[5] It has been demonstrated that this fourth coordination site can be leveraged to separate the t-Ni(cdt) enantiomers with recrystallization of diastereomeric 18-electron t-Ni(cdt)L* complexes (where L* = optically active dimethylmenthylphosphine ligand).[3][4]

Applications

The all-trans-(cdt) ligand has been shown to be easily displaced with olefins such as trans-cyclooctene,[3] ethylene,[6] all-cis-(cdt),[7] norbornene,[6][8] to give the corresponding colorless 16-electron Ni(0)-olefin complexes with coplanar geometry. Ni(cod)2 can also be easily prepared from Ni(cdt).

Formation of other 16-electron Ni(0)-olefin complexes from t-Ni(cdt)

Recently, it was demonstrated that t-Ni(cdt) can be used to synthesize unique air-stable 16-electron Ni(0)–olefin complexes, such as Ni(Fstb)3 and Ni(4-tBustb)3 using (E)-stilbene ligands.[9][10]

References

  1. Wilke, G. (1960). "Hauptversammlung der Gesellschaft Deutscher Chemiker". Angewandte Chemie. 72 (16): 581–582. doi:10.1002/ange.19600721611.
  2. Brauer, D. J.; Krüger, C. (1972). "The three-dimensional structure of trans.trans,trans-1,5,9-cyclododecatrienenickel". Journal of Organometallic Chemistry. 44 (2): 397–402. doi:10.1016/S0022-328X(00)82929-0.
  3. 1 2 3 Wilke, G. (1988). "Contributions to Organo-Nickel Chemistry". Angewandte Chemie International Edition. 27 (1): 185–206. doi:10.1002/anie.198801851.
  4. 1 2 Jolly, P. W. (1974). The Organic Chemistry of Nickel. Vol. 1. Elsevier. pp. 252–253. doi:10.1016/B978-0-12-388401-5.X5001-5. ISBN 978-0-12-388401-5.
  5. Bogdanović, B.; Kröner, M.; Wilke, G. (1966). "Übergangsmetallkomplexe, I. Olefin-Komplexe des Nickels(0)". Justus Liebigs Annalen der Chemie. 699 (1): 1–23. doi:10.1002/jlac.19666990102. PMID 5986842.
  6. 1 2 Fischer, K.; Jonas, K.; Misbach, P.; Stabba, R.; Wilke, G. (1973). "Zum "Nickel-Effekt"︁". Angewandte Chemie. 85 (23): 1001–1012. doi:10.1002/ange.19730852302.
  7. Jonas, K.; Heimbach, P.; Wilke, G. (1968). "1,5,9-Cyclododecatriene Complexes of Nickel(0)". Angewandte Chemie International Edition. 7 (12): 949–950. doi:10.1002/anie.196809491.
  8. Lutz, S.; Nattmann, L.; Nöthling, N.; Cornella, J. (2021). "16-Electron Nickel(0)-Olefin Complexes in Low-Temperature C(sp2)–C(sp3) Kumada Cross-Couplings". Organometallics. doi:10.1021/acs.organomet.0c00775. ISSN 0276-7333.
  9. Nattman, L.; Saeb, R.; Nöthling, N.; Cornella, P. (2019). "An air-stable binary Ni(0)–olefin catalyst". Nature Catalysis. 3 (2020): 6–13. doi:10.1038/s41929-019-0392-6. S2CID 208957817.
  10. Nattmann, L.; Cornella, P. (2020). "Ni(4-tBustb)3: A Robust 16-Electron Ni(0) Olefin Complex for Catalysis". Organometallics. 39 (18): 3295–3300. doi:10.1021/acs.organomet.0c00485.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.