ZNF598
Identifiers
AliasesZNF598, zinc finger protein 598, HEL2, zinc finger protein 598, E3 ubiquitin ligase
External IDsOMIM: 617508 MGI: 2670965 HomoloGene: 5672 GeneCards: ZNF598
Orthologs
SpeciesHumanMouse
Entrez

90850

213753

Ensembl

ENSG00000167962

ENSMUSG00000041130

UniProt

Q86UK7

Q80YR4

RefSeq (mRNA)

NM_178167
NM_001405664
NM_001405665

NM_183149
NM_001348231

RefSeq (protein)

NP_835461

NP_898972
NP_001335160

Location (UCSC)Chr 16: 2 – 2.01 MbChr 17: 24.89 – 24.9 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Zinc finger protein 598 (ZNF598) is a protein that in humans is encoded by the ZNF598 gene.[5]

Function

Zinc-finger proteins bind nucleic acids and play important roles in various cellular functions, including cell proliferation, differentiation, and apoptosis. This protein and Grb10-interacting GYF protein 2 have been identified as a components of the mammalian 4EHP (m4EHP) complex.[6] The complex is thought to function as a translation repressor in embryonic development. ZNF598 and its yeast homologue Hel2 are ubiquitin ligases that ubiquitinate the 40S ribosomal subunit during ribosome-associated protein quality control.[7][8][9][10]

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000167962 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000041130 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: Zinc finger protein 598".
  6. Morita, Masahiro; Ler, Lian Wee; Fabian, Marc R.; Siddiqui, Nadeem; Mullin, Michael; Henderson, Valerie C.; Alain, Tommy; Fonseca, Bruno D.; Karashchuk, Galina; Bennett, Christopher F.; Kabuta, Tomohiro; Higashi, Shinji; Larsson, Ola; Topisirovic, Ivan; Smith, Robert J. (September 2012). "A novel 4EHP-GIGYF2 translational repressor complex is essential for mammalian development". Molecular and Cellular Biology. 32 (17): 3585–3593. doi:10.1128/MCB.00455-12. ISSN 1098-5549. PMC 3422012. PMID 22751931.
  7. Juszkiewicz S, Hegde RS (February 2017). "Initiation of Quality Control during Poly(A) Translation Requires Site-Specific Ribosome Ubiquitination". Molecular Cell. 65 (4): 743–750.e4. doi:10.1016/j.molcel.2016.11.039. PMC 5316413. PMID 28065601.
  8. Sundaramoorthy E, Leonard M, Mak R, Liao J, Fulzele A, Bennett EJ (February 2017). "ZNF598 and RACK1 Regulate Mammalian Ribosome-Associated Quality Control Function by Mediating Regulatory 40S Ribosomal Ubiquitylation". Molecular Cell. 65 (4): 751–760.e4. doi:10.1016/j.molcel.2016.12.026. PMC 5321136. PMID 28132843.
  9. Sitron CS, Park JH, Brandman O (May 2017). "Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation". RNA. 23 (5): 798–810. doi:10.1261/rna.060897.117. PMC 5393187. PMID 28223409.
  10. Matsuo Y, Ikeuchi K, Saeki Y, Iwasaki S, Schmidt C, Udagawa T, Sato F, Tsuchiya H, Becker T, Tanaka K, Ingolia NT, Beckmann R, Inada T (July 2017). "Ubiquitination of stalled ribosome triggers ribosome-associated quality control". Nature Communications. 8 (1): 159. Bibcode:2017NatCo...8..159M. doi:10.1038/s41467-017-00188-1. PMC 5534433. PMID 28757607.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.