一氧化硫

一氧化硫是一种无机化合物,化学式为SO。它只能以低浓度气体存在。当浓缩或进入凝聚相,它会二聚成S2O2。在太空已经检测到一氧化硫,但是很少有完整分子存在。

一氧化硫
Skeletal formula of sulfur monoxide
Spacefill model of sulfur monoxide
IUPAC名
Sulfur monoxide
系统名
Oxidosulfur[1]
识别
CAS号 13827-32-2  checkY
PubChem 114845
ChemSpider 102805
SMILES
 
  • O=S
InChI
 
  • 1/OS/c1-2
InChIKey XTQHKBHJIVJGKJ-UHFFFAOYAK
Beilstein 7577656
Gmelin 666
ChEBI 45822
MeSH sulfur+monoxide
性质
化学式 SO
48.064 g·mol¹
外观 无色气体
溶解性 反应
log P 0.155
偶极矩 1.55 D[2]
热力学
ΔfHm298K 6.3 kJ mol-1[3]
S298K 221.94 J K-1 mol-1
危险性
NFPA 704
4
3
4
 
相关物质
相关化学品 三线态氧
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。

结构和成键

一氧化硫的基态和O2S2相似,为三线态。也就是说,一氧化硫中有两个不成对的电子。[4]其中的S−O 键长是148.1 pm,和其它低氧化硫(例如S8O中的S−O键长为148 pm)的键长类似,但比气态S2O(146 pm)、SO2(143.1 pm)和SO3(142 pm)的键长长。[4]

近红外线可以将一氧化硫激发到单线态(没有不成对电子)。它的反应性比基态三线态高,就和单线态氧三线态氧更具反应性一样。[5]

生产和反应

作为有机合成试剂的一氧化硫的生产主要集中在使用可以“挤出”SO的化合物。这些化合物包括相对简单的氧化硫丙环[6]或是C10H6S3O[7]的分解:

C2H4SO → C2H4 + SO

SO分子是热力学不稳定的,会二聚成S2O2[4]SO会和烯烃炔烃二烯加成,形成环硫化物,也就是有含硫三元环的化合物。[8]

在极端条件下的产生

在实验室中,一氧化硫可以通过二氧化硫和硫蒸汽辉光放电而成。[4]在含有一些溶解的惰性气体的浓硫酸单气泡声致发光中也检测到了一氧化硫。[9]

一氧化硫基于以下反应的化学发光[10]

SO + O3 → SO2* + O2
SO2* → SO2 + hν

其中*指激发态

存在

作为配体

SO配体可以以多种方式键合:[11][12]

  • 角形M−O−S结构的终端配体,例如氟氧化钛的配体[13]
  • 角形M−S−O结构的终端配体,类似角形的亚硝基配体
  • 通过硫原子和两个或三个金属中心桥接,例如Fe3(μ3-S)(μ3-SO)(CO)9
  • η2侧向配位(d–π相互作用)[14]

天体化学

人们已经在木星的卫星之一木卫一周围的大气[15]等离子体环面[16]中检测到一氧化硫。它也存在于金星的大气中,[17]海尔-波普彗星[18]星际物质里。[19]

木卫一中,一氧化硫被认为是由火山活动光化学路径生成的。主要光化学反应如下:[20]

O + S2 → S + SO
SO2 → SO + O

一氧化硫也被发现存在于天鹅座NML[21]

生物化学

一氧化硫可能具有一些生物活性。从反应产物羰基硫二氧化硫推断,冠状动脉中有瞬态的一氧化硫。[22]

双阳离子

二氧化硫 SO2六甲苯 C6(CH3)6存在下可以被超强酸HF·AsF5质子化,产生非刚性的π配合物 C6(CH3)6SO2+。其中的SO2+阳离子可以在苯环上无障碍移动。这个双阳离子的S−O键长为142.4(2) pm。[23]

C6(CH3)6 + SO2 + 3 HF·AsF5 → [C6(CH3)6SO][AsF6]2 + [H3O][AsF6]

二聚体

S2O2的结构
二氧化二硫的空间填充模型

一氧化硫会二聚成二氧化二硫(S2O2)。[24]它是一种平面型分子,对称群 C2v。它的S-S键长为202.45 pm,S−O键长为145.8 pm,比一氧化硫单体的短。它的O−S−S键角为112.7°。 S2O2的偶极矩为3.17 D[24]

参考资料

  1. . Chemical Entities of Biological Interest. UK: European Bioinformatics Institute. [2011-08-28]. (原始内容存档于2013-07-07).
  2. Lide, David R. (编). 90th. Boca Raton, Florida: CRC Press. 2009: 9-52. ISBN 978-1-4200-9084-0 (英语).
  3. Lide, David R. (编). 90th. Boca Raton, Florida: CRC Press. 2009: 5-16. ISBN 978-1-4200-9084-0 (英语).
  4. Greenwood, N. N.; Earnshaw, A. 2nd. Oxford:Butterworth-Heinemann. 1997. ISBN 0-7506-3365-4.
  5. Salama, F.; Frei, H. J. . Journal of Physical Chemistry. 1989, 93: 1285–1292. doi:10.1021/j100341a023.
  6. Chao, P.; Lemal, D. M. . Journal of the American Chemical Society. 1973, 95 (3): 920. doi:10.1021/ja00784a049.
  7. Grainger, R. S.; Procopio, A.; Steed, J. W. . Organic Letters. 2001, 3 (22): 3565–3568. PMID 11678709. doi:10.1021/ol016678g.
  8. Nakayama, J.; Tajima, Y.; Piao, X.-H.; Sugihara, Y. . Journal of the American Chemical Society. 2007, 129 (23): 7250–7251. PMID 17506566. doi:10.1021/ja072044e.
  9. Suslick, K. S.; Flannigan, D. J. . The Journal of the Acoustical Society of America. 2004, 116 (4): 2540. Bibcode:2004ASAJ..116.2540S. doi:10.1121/1.4785135.
  10. Benner, R. L.; Stedman, D. H. . Applied Spectroscopy. 1994, 48 (7): 848–851. Bibcode:1994ApSpe..48..848B. S2CID 98849015. doi:10.1366/0003702944029901.
  11. Schenk, W. A. 26: 98–109. 1987. doi:10.1002/anie.198700981.
  12. Woollins, J. D. . . John Wiley and Sons. 1995. ISBN 0-471-93620-0.
  13. Wei, R.; Chen, X.; Gong, Y. . Inorganic Chemistry. 2019, 58 (17): 11801–11806. PMID 31441297. doi:10.1021/acs.inorgchem.9b01880.
  14. Wei, R.; Chen, X.; Gong, Y. . Inorganic Chemistry. 2019, 58 (6): 3807–3814. PMID 30707575. doi:10.1021/acs.inorgchem.8b03411.
  15. Lellouch, E. . Icarus. 1996, 124: 1–21. doi:10.1006/icar.1996.0186.
  16. Russell, C. T.; Kivelson, M. G. . Science. 2000, 287 (5460): 1998–1999. Bibcode:2000Sci...287.1998R. PMID 10720321. doi:10.1126/science.287.5460.1998.
  17. Na, C. Y.; Esposito, L. W.; Skinner, T. E. . Journal of Geophysical Research. 1990, 95: 7485–7491. Bibcode:1990JGR....95.7485N. doi:10.1029/JD095iD06p07485.
  18. Lis, D. C.; Mehringer, D. M.; Benford, D.; Gardner, M.; Phillips, T. G.; Bockelée-Morvan, D.; Biver, N.; Colom, P.; Crovisier, J.; Despois, D.; Rauer, H. . Earth, Moon, and Planets. 1997, 78 (1–3): 13–20. Bibcode:1997EM&P...78...13L. S2CID 51862359. doi:10.1023/A:1006281802554.
  19. Gottlieb, C. A.; Gottlieb, E. W.; Litvak, M. M.; Ball, J. A.; Pennfield, H. . Astrophysical Journal. 1978, 1 (219): 77–94. Bibcode:1978ApJ...219...77G. doi:10.1086/155757.
  20. Moses, J. I.; Zolotov, M. Y.; Fegley, B. . Icarus. 2002, 156 (1): 76–106. Bibcode:2002Icar..156...76M. doi:10.1006/icar.2001.6758.
  21. Marvel, Kevin. . . Universal Publishers. 1996: 182–212 [23 August 2012]. ISBN 978-1-58112-061-5. (原始内容存档于2022-03-08).
  22. Balazy, M.; Abu-Yousef, I. A.; Harpp, D. N.; Park, J. . Biochemical and Biophysical Research Communications. 2003, 311 (3): 728–734. PMID 14623333. doi:10.1016/j.bbrc.2003.10.055.
  23. Malischewski, Moritz; Seppelt, Konrad. (PDF). Angewandte Chemie International Edition. 2017, 56 (52): 16495–16497 [2021-12-26]. ISSN 1433-7851. PMID 29084371. doi:10.1002/anie.201708552. (原始内容 (PDF)存档于2021-12-26) (英语).
  24. Lovas, F. J.; Tiemann, E.; Johnson, D. R. . The Journal of Chemical Physics. 1974, 60 (12): 5005–5010. Bibcode:1974JChPh..60.5005L. doi:10.1063/1.1681015.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.