正三角形鑲嵌

幾何學中,正三角形鑲嵌、又稱為正三角方格[3]是一種正多邊形平面上的密鋪,又稱正鑲嵌圖

正三角形鑲嵌
正三角形鑲嵌
類別正鑲嵌
對偶多面體正六邊形鑲嵌在维基数据编辑
識別
鮑爾斯縮寫
trat在维基数据编辑
數學表示法
考克斯特符號
node 6 node 3 node_1 
node 6 node_h 3 node_h 
node_1 split1 branch  = node_h 6 node 3 node 
node_h split1 branch_hh 
施萊夫利符號{3,6}
{3[3]}
威佐夫符號
6 | 3 2
3 | 3 3
| 3 3 3
康威表示法dH
特殊面或截面
梵奧斯截面
無限邊形[2]
組成與佈局
頂點圖3.3.3.3.3.3(或36
頂點佈局
36
對稱性
對稱群p6m, [6,3], (*632)
p3m1, [3[3]], (*333)
p3, [3[3]]+, (333)
旋轉對稱群
p6, [6,3]+, (632)
p3, [3[3]]+, (333)
圖像

3.3.3.3.3.3(或36
頂點圖

正六邊形鑲嵌
對偶多面體

命名

康威稱正三角形鑲嵌為deltille。deltille一詞來自於外形為三角形的希臘字母 DeltaΔ),有時也稱作六角化正六邊形鑲嵌

性質

由於正三角形鑲嵌是由正三角形組成,又因正三角形內角為60,因此每個頂點周圍都有6個三角形,且剛好占滿360度。

正三角形鑲嵌在施萊夫利符號中,用{3,6}表示。

正三角形鑲嵌是三個的平面正鑲嵌圖之一。另外兩個是正方形鑲嵌和正六邊形鑲嵌。

一般將畫在紙上的正三角方格稱作正三角格紙[3],正三角格紙是用來畫三維立體圖或三維透視圖用的。使用正三角格紙作圖會比較容易做出三維立體圖或三維透視圖,而且圖形看起來比較接近三維[3]

上色的正三角形鑲嵌

正三角形鑲嵌有九種不同的上色方式,他們依頂點周為顏色數來命名: 111111, 111112, 111212, 111213, 111222, 112122, 121212, 121213, 121314。

上色
索引
111111 121212 121314 121213
圖示
1
1
1
1
1
1
1
2
1
2
1
2
1
3
1
4
1
2
1
2
1
3
1
2
上色
對稱群 *632
(p6m)
[6,3]
*333
(p3m1)
[3[3]] = [1+,6,3]
333
(p3)
[3[3]]+
3*3
(p31m)
[6,3+]
Wythoff符号 6 | 3 2 3 | 3 3 | 3 3 3
考克斯特符号 node 6 node 3 node_1  node_1 split1 branch  = node_h 6 node 3 node  node_h split1 branch_hh  node 6 node_h 3 node_h 

A2晶格和圆堆砌

正三角形镶嵌的顶点排布被称作A2晶格[4]。正三角形镶嵌是单纯形堆砌家族的二维成员。

A2*晶格(又称A23),可由所有3种A2晶格组合得来,就等价于A2晶格。

node_1 split1 branch  + node split1 branch_10lu  + node split1 branch_01ld  = node_1 split1 branch_11  的对偶 = node_1 split1 branch 

以正三角形镶嵌的顶点为圆心,我们可以得到二维的最密圆堆砌,每个圆都与6个相邻圆接触(接触数),堆砌密度为或90.69%。由于3个A2晶格组合还是A2晶格,这种圆堆砌种的圆可被涂成三种颜色。

A2晶格的沃罗诺伊图正六边形镶嵌,它也是正三角形镶嵌的对偶。因此,正六边形镶嵌也与最密圆堆砌有直接的对应关系。

A2晶格圆堆砌 A*
2
晶格圆堆砌
正六边形镶嵌

相關半正鑲嵌

正三角形镶嵌家族的半正镶嵌
对称性: [6,3], (*632) [6,3]+, (632) [1+,6,3], (*333) [6,3+], (3*3)
node_1 6 node 3 node  node_1 6 node_1 3 node  node 6 node_1 3 node  node 6 node_1 3 node_1  node 6 node 3 node_1  node_1 6 node 3 node_1  node_1 6 node_1 3 node_1  node_h 6 node_h 3 node_h  node_h 6 node 3 node  node 6 node_h 3 node_h 
{6,3} t0,1{6,3} t1{6,3} t1,2{6,3} t2{6,3} t0,2{6,3} t0,1,2{6,3} s{6,3} h{6,3} h1,2{6,3}
半正对偶
node_f1 6 node 3 node  node_f1 6 node_f1 3 node  node 6 node_f1 3 node  node 6 node_f1 3 node_f1  node 6 node 3 node_f1  node_f1 6 node 3 node_f1  node_f1 6 node_f1 3 node_f1  node_fh 6 node_fh 3 node_fh  node_fh 6 node 3 node  node 6 node_fh 3 node_fh 
V6.6.6 V3.12.12 V3.6.3.6 V6.6.6 V3.3.3.3.3.3 V3.4.12.4 V.4.6.12 V3.3.3.3.6 V3.3.3.3.3.3

从六邊形鑲嵌可利用“交错”操作將六邊形鑲嵌變成三角形鑲嵌。

交錯2n邊形鑲嵌系列:
球面鑲嵌 多面體 歐式鑲嵌 緊湊雙曲鑲嵌 仿緊空間 非緊空間
n 1 2 3 4 5 6
2n邊形鑲嵌 {2,3} {4,3} {6,3} {8,3} {10,3} {12,3} {,3} {iπ/λ,3}
交錯2n邊形鑲嵌
h{2,3}
node h1 2 node 3 node 

h{4,3}
node h1 4 node 3 node 

h{6,3}
node h1 6 node 3 node 

h{8,3}
node h1 8 node 3 node 

h{10,3}
node h1 10 node 3 node 

h{12,3}
node h1 12 node 3 node 
...
h{∞,3}
node h1 infin node 3 node 

h{iπ/λ,3}
node h1 ultra node 3 node 

相关

维基共享资源上的相关多媒体资源:正三角形鑲嵌

參考文獻

  1. Coxeter, H.S.M., , Cambridge University Press, 1991, ISBN 0-521-39490-2
  2. Coxeter, Complex Regular polytopes,[1] p.141
  3. 《圖解數學辭典》天下遠見出版 P.50 ISBN 986-417-614-5
  4. . [2014-01-26]. (原始内容存档于2021-02-25).

阅读

  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 p. 296, Table II: Regular honeycombs
  • Grünbaum, Branko ; and Shephard, G. C. . New York: W. H. Freeman. 1987. ISBN 0-7167-1193-1. (Chapter 2.1: Regular and uniform tilings, p. 58-65)
  • 埃里克·韦斯坦因. . MathWorld.
  • Klitzing, Richard. . bendwavy.org.
  • Williams, Robert. . Dover Publications, Inc. 1979. ISBN 0-486-23729-X. p35
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5
  • Tilings and Patterns, from list of 107 isohedral tilings, p.473-481
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.