氢化
氢化也称为加氢,是一种用氢气和其他化合物反应的单元操作,通常发生在镍、钯、铂等催化剂表面。氢化通常用于还原未饱和的有机化合物或其他化合物。碳氢化合物的氢化可以还原掉分子中的双键和三键[1]。典型的氢化过程是烯烃加氢,有一分子的氢气加入烯烃分子中。由于氢气不活跃,通常必须有催化剂的存在才能反应,无催化剂的氢化过程只在高温下才发生。
催化加氢 (Catalysed hydrogenation) | |
---|---|
類型 | 化学 |
工業部門 | 食品工业,石油化工,制药工业,农业 |
技術 | 各种过渡金属催化剂,高压反应技术 |
原料 | 未饱和底物及氢气或供氢体 |
產品 | 饱和烃及其衍生物 |
發明者 | 保罗·萨巴捷 |
發明年份 | 1897年 |
氢化在化工生产中一般分为两种:
过程
在氢化过程中有三种物质:作为底物的不饱和烷烃、氢气或者等价的供氢源和必要的催化剂。氢化还原反应发生的温度、压力取决于底物的种类和催化剂的活性。
相关及竞争反应
氢化反应所需要的催化剂及反应条件也能让烯烃发生异构化反应,其构型会从顺式变为反式。这个过程在食品工业中很重要,因为加氢技术在食物里产生了大量的反式脂肪酸。
原有的化学键断裂,再加上一分子氢气的反应称为氢解。氢解可能会导致碳-碳键或碳-杂键断裂(杂原子可以是:氧、氮、硫或卤素)。氢化产物中的极性键可能是氢解产生的。
供氢源
对于氢化过程,最直接的供氢源就是氢气,商业上氢气通常储存在加压的钢瓶中。工业上的氢化过程的压力通常是一个大气压以上,这时需要使用增压泵将钢瓶中的氢气升压到所需压力。工业上氢气的来源是碳氢化合物的蒸汽重整[2]。 许多不直接使用氢气的情况下,可以用像甲酸、异丙醇、二氢蒽这样的供氢剂作为供氢源。它们经脱氢反应生成二氧化碳、丙酮和蒽,并还原其他化合物。这样的反应称为转移加氢。
底物
烯烃和炔烃加氢的一个重要特征是顺式加成。不论是均相催化还是非均相催化,反应都通过顺式加成机理进行,氢气从位阻最小的地方进攻[3]。加成反应可以在不同的官能团上进行:
底物 | 产物 | 备注 | 氢化热 (kJ/mol)[4] |
---|---|---|---|
R2C=CR'2 (烯烃) |
R2CHCHR'2 (烷烃) |
在人造奶油的生产中广泛应用 | −90 ~ −130 |
RC≡CR' (炔烃) |
RCH2CH2R' (烷烃) |
部分加氢得到 cis-RHC=CHR' | −300 (加氢至饱和) |
RCHO (醛) |
RCH2OH (伯醇) |
通常采用转移加氢 | −60 ~ −65 |
R2CO (酮) |
R2CHOH (仲醇) |
通常采用转移加氢 | −60 ~ −65 |
RCO2R' (酯) |
RCH2OH + R'OH (两种醇) |
常用于脂肪醇的生产 | −25 ~ −105 |
RCO2H (羧酸) |
RCH2OH (伯醇) |
用于脂肪醇的生产 | −25 ~ −75 |
RNO2 (硝基) |
RNH2 (胺) |
主要用于生产苯胺[5][6] | −550 |
催化剂
除了少数情况下,在没有催化剂时,氢气不会和有机物反应。不饱和的反应底物会化学吸附到催化剂表面,催化剂的大多数表面都被底物占据。在非均相催化反应中,氢气和催化剂表面形成键 (M-H),这样氢原子就能转移到已经吸附的底物上。铂钯铑和铷均是高活性的催化剂,可以在较低的温度压力下操作。贵金属催化剂虽然活性高,反应条件要求低,但价格太高。基于镍的非贵金属催化剂,如兰尼镍、漆原镍等价格较低、更经济,但反应活性不高,需要在高温、高压下反应[7][8]。人们需要在反应活性(反应速度)与催化剂的成本以及使用高压设备的成本之间权衡,找到合适的平衡点。
催化剂通常按反应体系的相态分为两类:均相催化和非均相催化。均相催化剂和反应物均溶解在溶剂中。而非均相催化剂是固体,悬浮在溶解有底物的溶剂中,或者与气体底物反应。
均相催化剂
以下列出了有名的均相催化剂。这些催化剂都是配合物,可以同时活化氢气和不饱和底物。大多数情况下配合物含有鉑系的金属,如铂、钌、铱等。
- 三(三苯基膦)二氯化钌(II) 是一种基于铑的预催化剂
- Crabtree 催化剂是一种含依的高活性催化剂
- Rh2Cl2(cod)2 是许多均相催化剂的前体
- (S)-iPr-PHOX 是一种典型的螯合磷酸配体,用于不对称氢化反应
均相催化剂也用在不对成合成中,通过催化前手性底物加氢可以得到不对成的产物。这种方法最早的证明是铑催化的酰胺氢化反应,产物作为药物 L-DOPA 的前体[9]。为了实现不对称还原,催化剂使用手性二膦作为配体[10]。铑催化氢化也被应用于 S-metolachlor 除草剂的生产中,它使用了Josiphos 类型的配体(称为Xyliphos)[11]。从理论上讲,不对称氢化反应可以被手性非均相催化剂催化[12],但这种方法更多的是一种探索,而不是一项实用的技术。
设备
对于氢化过程,化学工程师可以选择三大类设备:
- 常压间歇加氢
- 高温/高压间歇加氢[13]
- 流动加氢
常压加氢
常压加氢是最原始的加氢方法。现在仍然用于教学用途。常压加氢通常在圆底烧瓶中进行,烧瓶口用橡胶圈密封,烧瓶内装有溶解的反应物和固体催化剂,并用氮气或氩气隔绝空气做保护气。氢气通过氢气球持续加入,并通过不断搅拌,以促进三相反应物反应。可以通过监视氢气球的变化或氢气的吸收来来判断氢气的消耗量,进而判断氢化反应的进行程度。通常使用盛有硫酸铜等有色液体的刻度管来测量氢气的吸收量,或使用带有刻度的反应器。
高温/高压加氢
对于许多氢化反应,如去除保护基团的氢解反应和芳香体系的还原反应,常温常压下进行的十分缓慢,对于这种类型的反应一般使用高压系统。在这种情况下,催化剂添加到惰性氛围下的压力容器中,氢气直接从气瓶或实验室的供氢源加入体系中。加压的浆液体系通过机械摇动进行搅拌混合,或者使用旋转篮搅拌[13],也可以加热,让浆体自行混合,因为压力弥补了加热导致的气体溶解度的降低。
参考文献
- Hudlický, Miloš. . Washington, D.C.: American Chemical Society. 1996: 429. ISBN 0-8412-3344-6.
- Paul N. Rylander, "Hydrogenation and Dehydrogenation" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005. doi:10.1002/14356007.a13_487
- Advanced Organic Chemistry Jerry March 2nd Edition
- Scott D. Barnicki "Synthetic Organic Chemicals" in Handbook of Industrial Chemistry and Biotechnology edited by James A. Kent, New York : Springer, 2012. 12th ed. ISBN 978-1-4614-4259-2.
- . Ind. Jr. of Chem. Tech. 2000, 7: 280.
- Patel, D. R. . Journal of Molecular Catalysis. 1998, 130: 57. doi:10.1016/s1381-1169(97)00197-0.
- C. F. H. Allen and James VanAllan (1955). "m-Toylybenzylamine". Org. Synth.; Coll. Vol. 3: 827.
- A. B. Mekler, S. Ramachandran, S. Swaminathan, and Melvin S. Newman (1973). "2-Methyl-1,3-Cyclohexanedione". Org. Synth.; Coll. Vol. 5: 743.
- Knowles, W. S. . Journal of Chemical Education. March 1986, 63 (3): 222. Bibcode:1986JChEd..63..222K. doi:10.1021/ed063p222.
- Atkins, Peter W. 5th. New York: W. H. Freeman and Co. 2010: 696. ISBN 978-1-4292-1820-7.
- Blaser, Hans-Ulrich; Pugin, Benoît; Spindler, Felix; Thommen, Marc. . Accounts of Chemical Research. December 2007, 40 (12): 1240–1250. doi:10.1021/ar7001057.
- Mallat, T.; Orglmeister, E.; Baiker, A. . Chemical Reviews. 2007, 107 (11): 4863–90. PMID 17927256. doi:10.1021/cr0683663.
- Adams, Roger; Voorhees, V. . Organic Syntheses. 1928, 8: 10. doi:10.15227/orgsyn.008.0010.
- Joshi, J.B.; Pandit, A.B.; Sharma, M.M. . Chemical Engineering Science. 1982, 37 (6): 813. doi:10.1016/0009-2509(82)80171-1.
外部链接
- "The Magic of Hydro" Popular Mechanics, June 1931, pp. 107–109 (页面存档备份,存于) —— 20世纪30年代,面向大众介绍石油加氢技术的早期文章。