吉布斯能
在热力学裏,吉布斯能(英語:),又称吉布斯自由能、吉布斯函数、自由焓,常用英文字母標記。吉布斯能是國際化學聯會建議採用的名稱。吉布斯能是描述系統的熱力性質的一種熱力勢,定義為[1]:101[2]:128-129
- ;
热力学 |
---|
其中,是系统的内能,是絕對温度,是熵,是压强,是体积,是焓。
假設在等温等压狀況下,一個熱力系統從良好定義初態變換到良好定義終態,則其吉布斯能減少量必定大於或等於其所做的非體積功[註 1];假若這變換是可逆過程,則其吉布斯能減少量等於其所做的非體積功。所以,這熱力系統所能做的最大非體積功是其吉布斯減少量。
在等溫等壓狀況下,一個熱力過程具有自發性的必需條件為,吉布斯能隨著過程的演化而減小。這意味著,平衡系統的吉布斯能是最小值;在平衡點,吉布斯能對於其它自變量的導數為零。[1]:102
吉布斯能可以用來評估一個反應是否具有自發性,它可以用來估算一個熱力系統可以做出多少非體積功。當應用熱力學於化學領域時,吉布斯能是最常用到與最有用的物理量之一。[3]:291吉布斯能是為紀念美國物理學者約西亞·吉布斯而命名。[4]
概述
從熱力學第二定律,可以推論,在标准状况下(或更一般地,等温等压的状况下),系統的變換通常會自然地趨向於最小吉布斯能。
在等溫等壓的狀況下,一個反應所產生的吉布斯能變化量量度這反應的自發性。该反應發生的必要條件是,此反應的吉布斯能變化量小於或等於其所獲得的非體積功:[註 1]
- 。
這意味著,當该反應做出非體積功時,吉布斯能變化量是負值,即吉布斯能會減少。假若该反應是可逆的,則吉布斯能減少量等於所做出的非體積功:
- 。
当该反應的吉布斯能變化量是正值(這意味著吉布斯能的增加),則必須注入能量來促使反應發生,其注入能量的形式可以是電功或其它種非體積功。[3]:298-299
從整個孤立系統的角度來分析吉布斯能的物理機制。孤立系統是由反應與環境所組成。對於该反應過程,整個孤立系統的熵變化量等於反應與環境的熵變化量的總和,其大於或等於零;否則,此過程不可行;假若過程為可逆過程,則總和為零。在等溫等壓狀況下,這結果意味著吉布斯能變化量為負值,這種反應稱為放能反應。[1]:101
假設將幾個反應耦合在一起,則一個不具自發性的吸能反應(吉布斯能變化量為正值),可以转变为具有自發性。將熱能注入一個吸能反應,则其可被視為等价于非自發性反應與自發性反應的耦合,在这种情况下可使得整體的總熵變化量會大於或等於零,從而促使耦合反應的總吉布斯能變化量成為負值。
按照慣例,在術語「吉布斯自由能」裏的「自由」兩個字的意思是「以有用功的形式被釋出」[2]:119更精確地說,「自由能」的意思是以非體積功的形式被釋出的能量。[3]:298-299(對於等溫系統,「自由」這詞的意思,雖然稍微不同,也可以類比地適用於亥姆霍茲自由能,更精確地說,它是以功的形式被釋出的能量)當今,越來越多書籍與期刊論文會忽略使用「自由」這詞,改簡稱為「吉布斯能」。這是國際化學聯會在1988年大會為了統一國際科學術語而達成的共識。[5]然則,這術語標準至今尚未被普遍地遵循採納。
自發過程與平衡過程
設想一個完全不與外界交換能量或質量的孤立系統,其熵為。根據热力学第二定律,孤立系統會自發地朝著最大熵狀態演化,即孤立系統的熵變化量大於或等於零:[3]:291-292
- 。
假若,則此過程是可逆過程。
假設這孤立系統是由一個子系統與環境組成,孤立系統的內部是處於等溫等壓狀況,子系統可以與環境交換熱能與功。子系統在這裡簡稱為「系統」。、分別為系統與環境的熵,它們的熵變化量的總和滿足以下關係式:
- 。
假若系統從環境中吸取熱能,則按照熵的定義,
- 。
所以,
- 。
從吉布斯能的定義式,可以得到其變化量為
- 。
焓的定義式為
- 。
焓變化量為
- 。
非體積功是零的狀況
假設非體積功為零,則內能變化量為
- 。
總和吉布斯能變化量、焓變化量與內能變化量,可以得到
- 。
因此,在等溫等壓與非體積功為零的狀況前提下,吉布斯能變化量必定小於或等於零:
- 。
換句話說,在等溫等壓與非體積功為零的狀況下,仅需考虑系统的吉布斯能变化量,就可以評估熱力學過程是否為自发进行,而不必考虑外在環境因素。吉布斯能变化量可能屬於以下三種值域:
- :過程具有自发性。
- :過程處於平衡状态。
- :過程被嚴格禁止。
注意到在等溫等壓與非體積功為零的狀況下,系統的吉布斯能變化量與孤立系統的熵變化量,兩者之間的關係為
- 。
這意味著,孤立系統的熵的增加對應著子系統的吉布斯能的減少,所以,熱力學的自發方向是朝著吉布斯能的減少方向,吉布斯能可以評估一個熱力學過程的自發性。由於化學實驗通常是在等溫等壓狀況下進行,所以,吉布斯能是一種極具功能的熱力學概念。
非體積功不是零的狀況
假設在等溫等壓狀況下,系統從環境獲得非體積功,則內能變化量為[3]:297-298
- 。
系統的吉布斯能變化量為
- 。
吉布斯能變化量與系統所獲得非體積功,兩者的關係為:
- 。
換句話說,系統的吉布斯能減少量與系統對於環境所做的非體積功,兩者的關係為
- 。
系統所做的非體積功不是狀態函數,其數值是依工作路徑而定,而吉布斯能是狀態函數,吉布斯能減少量與工作路徑無關,所以,在等溫等壓狀況下,系統的吉布斯能減少量是其所能做的最大非體積功。
化學反應
化學反應也是一種熱力學過程,所以前面的分析也適用於化學反應。在等溫等壓狀況下,吉布斯能減少量可以用來評估化學反應的自發性,而當吉布斯能變化量等於零時,化學反應處於平衡狀態。
標準生成吉布斯能
物质 | 状态 | (kJ/mol) |
(kcal/mol) |
---|---|---|---|
NO | g | 87.6 | 20.9 |
NO2 | g | 51.3 | 12.3 |
N2O | g | 103.7 | 24.78 |
H2O | g | -228.6 | -54.64 |
H2O | l | -237.1 | -56.67 |
CO2 | g | -394.4 | -94.26 |
CO | g | -137.2 | -32.79 |
CH4 | g | -50.5 | -12.1 |
C2H6 | g | -32.0 | -7.65 |
C3H8 | g | -23.4 | -5.59 |
C6H6 | g | 129.7 | 29.76 |
C6H6 | l | 124.5 | 31.00 |
由於熱力學不能定義吉布斯能的絕對數值,所以实际应用时,可以利用它是狀態函數的性質來計算物質的標準生成吉布斯能,全名為「標準摩尔生成吉布斯能」,標記為「」或「」。首先,需要設定參考狀態的標準生成自由能為零;在標準狀況下,所有最穩定形式的元素都被指定為處於參考狀態。下一步,對於化合物或其它形式的元素,它們的標準生成吉布斯能被設定為,從最穩定形式的元素生成一摩尔化合物或其它形式的元素,所需要的吉布斯能變化量。在實驗方面,有很多方法可以用來估算物質的標準生成吉布斯能,例如,可以從物質的焓變化量與熵變化量實驗數據,利用吉布斯能的定義式估算出來。平常運算則可以從焓與熵列表裏查詢相關數值。[3]:295-296
假若某物質的標準生成吉布斯能是負值,則稱該物質為「熱力學穩定物質」;假若是正值,則為「熱力學不穩定物質」。例如,水的標準生成吉布斯能是負值,所以在標準狀況下很穩定。又例如,苯的標準生成吉布斯能是正值,所以在標準狀況下不穩定。[3]:295-296
開放系統
開放系統是一種能夠与其环境传递能量和物质的热力学系统。在開放系統裏,內能與每一種物質組分的數量有關:[7]:218-219
- ;
其中,是物質組分 的摩爾數。
內能的全微分是
- ;
其中,是物質組分的化學勢。
從吉布斯能的定義式,可以得到吉布斯能的全微分:
- 。
所以,化學勢與吉布斯能的關係為
- 。
在等溫等壓狀況下,吉布斯能的全微分是
- 。
吉布斯能是個狀態函數,當做積分運算時,吉布斯能的數值與積分路徑無關。由於化學勢只與溫度、壓強、物質組分比率有關,假若增加物質的總數量,而維持物質組分比率不變,則吉布斯能的微分式可以表示為
- ;
其中,是每一種物質組分同步增加的分率。
這樣,可以做積分得到吉布斯能:
- 。
理想氣體混合物
假設在系統裏,只有一種理想氣體組分,則從吉布斯能的全微分,可以得到偏導數[7]:213-216
- ;
其中,是莫耳吉布斯能,是莫耳體積。
對這偏微分方程做積分,可以得到
- ;
其中,是在參考壓強的莫耳吉布斯能,其只與溫度有關。
為了簡便起見,設定參考壓強為1atm,在計算時,壓強的單位必須為atm。這樣,可以將方程式表示為
- 。
假設系統有多種理想氣體組分,由於假定分子尺寸很微小,並且分子與分子之間不相互作用,則根據道爾頓分壓定律,理想氣體的壓強與分壓之間的關係為
- ;
其中,是第 種理想氣體的分壓。
因此,第 種理想氣體的吉布斯能為
- ;
按照比例,第 種理想氣體的化學勢為
- 。
對於氣體反應[7]:228-229
- ,
吉布斯能變化量為
- ;
其中,是標準反應吉布斯能,是反應商。
假若吉布斯能變化量為負值,則反應會自發進行;否則,假若為負值,則逆反應會自發進行。換句話說,整個反應朝著吉布斯能減少的方向進行。
假設反應達成化學平衡,則吉布斯能變化量為零:
- 。
平衡常數定義為
- 。
所以,平衡常數與溫度有關:
- 。
这样,可以給出以下结论:
- 时,。
- 时,。
- 时,。
电化学
前面非體積功不是零的狀況段落闡明,在等溫等壓狀況下,系統的吉布斯能減少量是其所能做的最大非體積功:
- 。
在電化學裏,電化電池所做的非體積功就是電功,其最大值就是電池反應的吉布斯能減少量。假設,有摩爾電子從電池的負極移動經過外電路抵達電池的正極,而電池的電動勢為,[註 2]則所獲得的非體積功為[8]:93-96
- ;
其中,为法拉第常数,即一摩爾電子所帶有的電荷。
假設整個過程為可逆過程,則可得到電化學的基礎方程式,其表示出吉布斯能變化量與電動勢的關係:
- 。
所以,電動勢為
- 。
對於所有反應物與產物都處於標準狀況的案例,電池的電動勢稱為「標準電動勢」,標記為,以方程式定義為
- 。
化學反應會朝著吉布斯能減少的方向自發進行。換句話說,朝著這方向,化學反應的吉布斯能變化量為負值。這意味著電動勢為正值,電池為原電池,無須置入外電壓源,電子就會通過外電路從負極移動至正極。
假若電動勢為負值,則電池為電解池,需要置入外電壓源,電子才能按照反應式的正方向移動。
將處於化學平衡的化學反應的公式代入電動勢公式,可以得到
- 。
再將標準電動勢的定義式代入,則可得到能斯特方程式:
- 。
通过此式,可以估算出,在任意状況下,電動勢的數值。
歷史
早期,化學家使用術語「親和勢」來描述促成化學反應的因素,但這術語已過時,現今已被術語「自由能」替代,自由能是一種比較先進與準確的術語。
1873年,吉布斯發表論文《用曲面方法來幾何表現出物質的熱力學性質》。在這篇論文裏,他詳細論述他的新方程式的原理。這方程式可以預測或估算,當幾樣物體或系統接觸在一起之時,各種自然過程發生的趨勢。通過研究幾樣均一性物質接觸時的相互作用,例如,由一部分固體、一部分液體與一部分氣體構成的物體,又通過展示相關體積-熵-內能三維圖,吉布斯可以判斷三種平衡狀態,即穩定平衡、中性平衡或不穩定平衡,以及是否會發生後續變化。吉布斯闡明,[4]
在這之後,於1882年,德國物理學者赫爾曼·馮·亥姆霍茲描繪親和勢為能夠從可逆性反應獲得的最大功,例如,從可逆性電池獲得的電功。按照這觀點,最大功被視為系統的自由能減少量(在等溫等壓狀況下的吉布斯能, 或在等溫等容狀況下的亥姆霍茲能),而釋出的熱能通常是系統的總能量減少量。這樣,吉布斯能或亥姆霍茲能是,在給定狀況下,可提供為功的能量。[9]:206 [10]
在那個時間嶺之前,一般觀點為,"所有化學反應會驅使系統至反應親和勢消失殆盡的平衡狀態"。之後60年,術語「親和勢」漸漸被術語「自由能」替代。根據化學歷史學者亨利·賴瑟斯特的紀載,於1923年,吉爾伯特·路易斯與莫爾·冉道爾發表了一本很具影響力的教科書《熱力學與化學物質的自由能》,在大部分英語系世界的國家,這本書籍促成了人們青睞與使用術語「自由能」。[9]:206
参阅
註釋
参考文献
- Greiner, Walter; Neise, Ludwig; Stöcker, Horst. . Springer-Verlag. 1995.
- Perrot, Pierre. . Oxford University Press. 1998. ISBN 0-19-856552-6.
- Peter Atkins; Loretta Jones. . W. H. Freeman. 1 August 2007. ISBN 978-1-4292-0965-6.
- J.W. Gibbs, "A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces," Transactions of the Connecticut Academy of Arts and Sciences 2, Dec. 1873, pp. 382-404 .
- . IUPAC GOLDBOOK. 24 Feb 2014 [2016-05-18]. (原始内容存档于2016-10-12).
- CRC Handbook of Chemistry and Physics, 2009, pp. 5-4 - 5-42, 90th ed., Lide
- Clement John Adkins. . Cambridge University Press. 14 July 1983. ISBN 978-0-521-27456-2.
- D.R. Crow. . CRC Press. 15 September 1994. ISBN 978-0-7514-0168-4.
- Henry Marshall Leicester. . Courier Corporation. 1971. ISBN 978-0-486-61053-5.
- Coffey, Patrick. (PDF). Hist Stud Phys Biol Sci. 2006, 36 (2): 365–396 [2016-06-08]. (原始内容 (PDF)存档于2017-01-07).