向量勢
向量微積分中,向量勢(英語:),或稱向量位,是一個向量場,其旋度為一給定向量場。這情形類比於純量勢為一純量場,其負值梯度為一給定向量場。
形式上,給定一向量場 v,則向量勢為一向量場 A 使得
- 。
若一向量場 v 具有向量勢 A,則從等式
可以得到
暗示了v必須是個螺線向量場(solenoidal vector field)。
一個有意思的問題是:是否任何螺線向量場都具有一向量勢?答案是肯定的,只要向量勢滿足一些特定條件。
非唯一性
螺线向量场所具有的向量势不是唯一的。如果 A 是 v 的一个向量势,那么:
也是一个向量势,其中m是任何一个连续可微的标量函数。这可以从梯度的旋度是零的事实推出。
参考文献
- Fundamentals of Engineering Electromagnetics by David K. Cheng, Addison-Wesley, 1993.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.