奇函數與偶函數
在數學裡,偶函數(英語:)和奇函數(英語:)是滿足著相對於加法逆元之特定對稱關係的函數。這在數學分析的許多領域中都很重要,特別是在冪級數和傅立葉級數的理論裡。其命名是因為冪函數的冪的奇偶性滿足下列條件:若n為一偶數,則函數是偶函數,若為一奇數,則為奇函數。
偶函數
設f(x)為一實變數實值函數,則為偶函數若下列的方程對所有在的定義域內的都成立:[1]
幾何上,一個偶函數會关于y軸對稱,亦即其圖像在對y軸為轴对称後不會改變。
偶函數的例子有|x|、x2、x4、cos(x)和cosh(x)。
偶函數不可能是個雙射映射。
基本特性
注意:一個函數為奇函數或偶函數不表示其為可微的,或即使為連續的。其包含在傅立葉級數、泰勒級數、導數等之性質都只在假設其存在時才被使用。
- 唯一一個同時為奇函數及偶函數的函數為其值為0的常數函數(即對所有,)。
- 通常,一個偶函數和一個奇函數的相加不會是奇函數也不會是偶函數;如。
- 兩個偶函數的相加為偶函數,且一個偶函數的任意常數倍亦為偶函數。(偶+偶=偶 n×偶=偶)
- 兩個奇函數的相加為奇函數,且一個奇函數的任意常數倍亦為奇函數。(奇+奇=奇 n×奇=奇)
- 兩個偶函數的乘積為一個偶函數。(偶×偶=偶)
- 兩個奇函數的乘積為一個偶函數。(奇×奇=偶)
- 一個偶函數和一個奇函數的乘積為一個奇函數。(偶×奇=奇)
- 兩個偶函數的商(除數不得為0)為一個偶函數。(偶÷偶=偶)
- 兩個奇函數的商(除數不得為0)為一個偶函數。(奇÷奇=偶)
- 一個偶函數和一個奇函數的商(除數不得為0)為一個奇函數。(偶÷奇=奇 奇÷偶=奇)
- 一個偶函數的導數為一個奇函數。(偶'=奇)
- 一個奇函數的導數為一個偶函數。(奇'=偶)
- 兩個奇函數的複合為一個奇函數,而兩個偶函數的複合為一個偶函數。[奇(奇)=奇 偶(偶)=偶]
- 一個偶函數和一個奇函數的複合為一個偶函數。[偶(奇)=偶 奇(偶)=偶]
参考文献
引用
- Gelfand 2002, p. 11
- Gelfand 2002, p. 72
- . [2006-12-25]. (原始内容存档于2018-01-01).
- Berners, Dave. . UA WebZine. Universal Audio. October 2005 [2016-09-22]. (原始内容存档于2018-01-01).
To summarize, if the function f(x) is odd, a cosine input will produce no even harmonics. If the function f(x) is even, a cosine input will produce no odd harmonics (but may contain a DC component). If the function is neither odd nor even, all harmonics may be present in the output.
来源
- 书籍
- Gelfand, I. M.; Glagoleva, E. G.; Shnol, E. E. . Mineola, NY: Dover Publications. 2002 [1969]. (原始内容存档于2016-09-21).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.