威沙特分佈
以統計學家约翰·威沙特為名的威沙特分佈是統計學上的一種半正定矩陣隨機分佈。[1]這個分佈在多變量分析的协方差矩阵估計上相當重要。
自由度 (實數) 尺度矩陣 (正定) | |||
值域 | 是正定的 | ||
期望值 | |||
眾數 | |||
特徵函数 |
常見應用
威沙特分佈常用於多變量的概似比檢定,亦用於隨機矩陣的頻譜理論中。
機率密度函數
威沙特分佈具有下述的機率密度函數:
令'為一正定對稱隨機變數矩陣。令為一特定正定矩陣。
如此,若,則服從於一具自由度n的威沙特分佈且有機率度函數
其中為多變量Gamma分佈,其定義為
上述定義可推廣至任一實數[2]
理論架構
若為一自由度為m,共變異矩陣為的威沙特分佈,記為——其中為一的q秩矩陣,則[4]
推論2
在 的情形下(亦即第j個元素為1其他為0),推論1可導出
為矩陣的每一個對對角元素的邊際分佈。
統計學家George Seber曾論證威沙特分佈並非多變量卡方分佈,這是因為非對角元素的邊際分佈並非卡方分佈,Seber傾向於將某某多變量分佈此一遣詞用於所有元素的邊際分佈皆相同的情形。[5]
多變量常態分佈的估計
由於威沙特分佈可視為一多變量常態分佈其共變異矩陣的最大概似估計量(MLE)的分佈,其衍自MLE的計算可為令人驚喜地簡約而優雅。[6] 基於頻譜理論,可將一純量視為一矩陣的跡(trace)。請參考共變異矩陣的估計。
分佈抽樣
以下的演算法取材自 Smith & Hocking (1972)。[7]一個來自自由度為n及共變異矩陣為的威沙特分佈的(其中)隨機樣本可以如下方式抽樣而得:
- 生成一隨機下三角矩陣 使得:
- 計算的Cholesky分解。
- 計算。此時, 為一的隨機樣本。
若,則因,可以直接以進行抽樣。
參考條目
- 共變異矩陣的估計
- Hotelling的T平方分佈
- 逆威沙特分佈
參考資料
- Wishart, J. . Biometrika. 1928, 20A (1–2): 32–52. JFM 54.0565.02. JSTOR 2331939. doi:10.1093/biomet/20A.1-2.32.
- Uhlig, H. . The Annals of Statistics. 1994, 22: 395–405. doi:10.1214/aos/1176325375.
- Anderson, T. W. 3rd. Hoboken, N. J.: Wiley Interscience. 2003: 259. ISBN 0-471-36091-0.
- Rao, C. R. . Wiley. 1965: 535.
- Seber, George A. F. . Wiley. 2004. ISBN 978-0471691211.
- Chatfield, C.; Collins, A. J. . London: Chapman and Hall. 1980: 103–108. ISBN 0-412-16030-7.
- Smith, W. B.; Hocking, R. R. . Journal of the Royal Statistical Society, Series C. 1972, 21 (3): 341–345. JSTOR 2346290.
- Anderson, T. W. 3rd. Hoboken, N. J.: Wiley Interscience. 2003: 257. ISBN 0-471-36091-0.
- Gelman, Andrew. 2nd. Boca Raton, Fla.: Chapman & Hall. 2003: 582 [3 June 2015]. ISBN 158488388X. (原始内容存档于2021-02-17).
- Zanella, A.; Chiani, M.; Win, M.Z. . IEEE Transactions on Communications. April 2009, 57 (4): 1050–1060. doi:10.1109/TCOMM.2009.04.070143.
- Bishop, C. M. . Springer. 2006: 693.
- Pearson, Karl; Jeffery, G. B.; Elderton, Ethel M. . Biometrika (Biometrika Trust). December 1929, 21: 164–201. JSTOR 2332556. doi:10.2307/2332556.
- Craig, Cecil C. . Ann. Math. Statist. 1936, 7: 1–15 [2016-05-02]. doi:10.1214/aoms/1177732541. (原始内容存档于2020-06-07).
- Peddada and Richards, Shyamal Das; Richards, Donald St. P. . Annals of Probability. 1991, 19 (2): 868–874. doi:10.1214/aop/1176990455.
- Gindikin, S.G. . Funct. Anal. Appl. 1975, 9 (1): 50–52. doi:10.1007/BF01078179.
- Dwyer, Paul S. . J. Amer. Statist. Assoc. 1967, 62 (318): 607–625. JSTOR 2283988.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.