逆威沙特分佈
逆威沙特分布,也叫反威沙特分布作是统计学中出现的一类概率分布函数,定义在实值的正定矩阵上。在贝叶斯统计中,逆威沙特分布會用作多变量正态分布协方差矩阵的共轭先验分布。 如果一个正定矩阵 的逆矩阵 遵从威沙特分布 的话,那么就说矩阵 遵从逆威沙特分布:
自由度 (實數) 尺度矩陣 (正定) | |||
值域 | 是正定的 | ||
期望值 | |||
眾數 | [1]:406 |
相关定理
威沙特分布矩阵之逆的边际与条件分布
设矩阵 遵从逆威沙特分布。并且假设矩阵 和 都有相适合的分块矩阵表示方式:
其中子矩阵 和 是 的矩阵,那么会有:
甲) 和 与 相互独立,其中 是子矩阵 在 中的舒尔补。
乙) ;
丙) ,其中 是矩阵正态分布。
丁)
共轭分布
假设要求先验分布 为逆威沙特分布 的协方差矩阵。如果观测值 是从互相独立的 p-变量正态分布 的随机变量得到的,那么条件分布 遵从的是逆威沙特分布:。其中 是样本协方差矩阵的倍。
因此,逆威沙特矩阵是多变量正态分布的共轭先验分布。
相关分布
当变量数目减到一个的时候,逆威沙特分布会变成特例:逆伽马分布。也就是说,当 、、 以及 的时候,逆威沙特分布的概率密度函数是:
这正是逆伽马分布。其中 是通常的伽马函数。
而逆威沙特分布也有推广,其中一个是正态逆威沙特分布。
参考来源
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.