小斜方截半立方體堆砌

幾何學中,小斜方截半立方體堆砌是一種歐幾里得三維空間的半正堆砌,是由小斜方截半立方體截半立方體正方體以1:1:3的比例堆砌而成。

小斜方截半立方體堆砌
線架圖
類型均勻堆砌
維度3
對偶多胞形quarter oblate octahedrille
數學表示法
考克斯特符號
node_1 4 node 3 node_1 4 node 
node_1 4 node split1 nodes_11  = node_1 4 node 3 node_1 4 node_h0 
纖維流形記號4:2
施萊夫利符號rr{4,3,4}
t0,2{4,3,4}
性質
rr{4,3}
r{4,3}
{4,3}
{3}
{4}
組成與佈局
顶点图
(Wedge)
對稱性
對稱群
空間群Pm3m (221)
考克斯特群[4,3,4],
特性
顶点正

康威小斜方截半立方體堆砌2-RCO-trille[1],因為它可以藉由對應的康威多面體變換而構造出來。其可以視為立方體堆砌經過「小斜方截半」變換構造而來,也可以視為由小斜方截半立方體堆砌而得,但小斜方截半立方體無法單獨堆砌,必須和其他多面體一起堆砌,而小斜方截半立方體堆砌是小斜方截半立方體、截半立方體和正方體共同堆砌而得。

自然界中的小斜方截半立方體堆砌

小斜方截半立方體堆砌關係到鈣鈦礦結構,在該結構中,每一個原子代表小斜方截半立方體堆砌的一個胞。

鈣鈦礦結構

對稱性與表面塗色

小斜方截半立方體堆砌有兩種不同對稱性的表面塗色,其中第二種表面塗色為小斜方截半立方體交錯地塗色。

胞的表面塗色
結構 截半立方體 交替過截角立方體
考克斯特群 [4,3,4],
=<[4,31,1]>
[4,31,1],
空間群Pm3mFm3m
考克斯特符號 node_1 4 node 3 node_1 4 node  node_1 4 node split1 nodes_11 
表面塗色
頂點圖
頂點

對稱性
[ ]
order 2
[ ]+
order 1

参考文獻

  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (包含11个凸半正镶嵌、28个凸半正堆砌、和143个凸半正四维砌的全表)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication参与编辑, 1995, ISBN 978-0-471-01003-6 页面存档备份,存于
    • (22页) H.S.M.考克斯特, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 半正空间镶嵌)
  • A. Andreini, Sulle reti di poliedri regolari e semiregolari e sulle corrispondenti reti correlative (On the regular and semiregular nets of polyhedra and on the corresponding correlative nets), Mem. Società Italiana della Scienze, Ser.3, 14 (1905) 75–129.
  1. John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Architectonic and Catoptric tessellations, p 292-298, includes all the nonprismatic forms)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.