局部分析
數論
在數論裡,局部分析出現於丟番圖方程中,如以所有的質數p為模,尋找其解答的限制。下一步為以質數的次方為模,尋找p進數中的解。此類局部分析提供了其解為必要的條件。在局部分析(加上有實數解的條件下)亦提供了充分條件下,哈瑟原則即會成立-這是最佳的可能狀況。它確實在二次型中成立,但不一定在一般狀況(如橢圓曲線)都成立。此一觀點-想要了解需要哪些額外的條件-是極有影響力的,如在三次型中。
某些類型的局部分析為解析數論中哈代-勒特伍德圓法的標準應用及賦值向量環的使用-那完成了數論中的此一統一原則,兩者之基礎。
另见
- 类别:本地化(数学)
- 一个类别的本地化
- 模块的本地化
- 环的本地化
- 拓扑空间的定位
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.