抗甲狀腺自體抗體
抗甲狀腺自體抗體或簡稱抗甲狀腺抗體(antithyroid autoantibodies 或 antithyroid antibodies)是指會攻擊甲狀腺上一種或多種構造的自體抗體。最有臨床重要性的抗甲狀腺抗體,包括:抗甲狀腺過氧化物酶抗體(anti-TPO antibodies,TPOAb)、促甲狀腺激素受體抗體(thyrotropin receptor antibodies,TRAb)和抗甲狀腺球蛋白抗體(TgAb)。TRAb 依它對促甲狀腺激素受體的功能影響被分為刺激型、阻斷型和中性型抗體。抗鈉碘同向運輸蛋白抗體(Anti–Na+/I− symporter antibodies)是個近年發現的自體抗體,它的臨床重要性目前仍不清楚。葛瑞夫茲氏病(又名「彌漫性毒性甲狀腺腫」)和橋本氏甲狀腺炎都與抗甲狀腺抗體存在有關。雖然有所重疊,anti-TPO 最常合併橋本氏甲狀腺炎,而刺激型 TRAb 最常與葛瑞夫茲氏病有關。甲狀腺微粒體抗體是一群抗甲狀腺抗體,在確定目標抗原是 TPO 後才更改名稱[1][2][3][4]。
亞型
抗甲狀腺抗體可依攻擊的目標抗原分成幾個亞型:
抗甲狀腺過氧化物酶抗體
抗甲狀腺過氧化物酶(anti-TPO)抗體攻擊針對的目標是自體抗原 TPO。TPO 是個 105 kDa 大的醣蛋白,在甲狀腺中負責催化碘氧化和甲狀腺球蛋白上的酪胺酸官能基碘化[5]。此類抗體主要的目標是TPO蛋白上羧基端具免疫原性區域的構型抗原表位,但也有部分則是針對抗原的線性抗原表位[4]。抗TPO抗體是最常見的抗甲狀腺自體抗體,它存在於大約90%的橋本氏甲狀腺炎患者、75%的葛瑞夫茲氏病患者,及10-20%的結節性甲狀腺腫或甲狀腺癌患者。此外,10-15%的正常人也有高濃度的抗TPO抗體[4][6][7]。慢性自體免疫甲狀腺炎在急性發作期可發現高濃度的抗TPO抗體,因此,已具有TPO抗體的自體免疫甲狀腺炎患者,可根據它的抗體力價(抗體濃度的單位)評估疾病的活性[4][7][8]。大部分的抗TPO抗體是由浸潤於甲狀腺組織內的淋巴細胞製造,少部分來自淋巴結和骨髓[9]。目前認為抗TPO抗體不會直接破壞甲狀腺[10];但它們但會活化補體系統,產生後續的免疫細胞毒殺作用,將會破壞甲狀腺細胞[7]。
促甲狀腺激素受體抗體
促甲狀腺激素受體(TSH receptor)是促甲狀腺素受體抗體(TRAbs)的目標抗原。它是一種G蛋白偶聯受體,負責甲狀腺素的訊息傳遞。依 TRAb 對受體訊息傳傳遞的影響,可分為刺激型抗體(會產生甲狀腺功能亢進症)、阻斷型抗體(與甲狀腺炎有關),及中性型抗體(不會影響受體功能)。刺激型和阻斷型抗體主要與構型抗原表位結合,而中性型抗體主要與抗原的線性抗原表位結合。自體抗體與促甲狀腺素受體結合的位置對受體功能的影響不同,與蛋白胺基端結合的具刺激型功能,與261-370或388-403號殘基結合的具阻斷型功能。葛瑞夫茲氏病患者中 70-100% 具有 TRAb(其中 85-100% 是刺激型抗體,75-96% 是阻斷型抗體),而一般大眾中有 1-2% 具有 TRAb[1][2][11]。
刺激型 TRAbs 是葛瑞夫茲氏病(自體免疫甲狀腺功能亢進症)的特點。與 TRAbs 相比,TPO 抗體測量更簡單,因此經常被當作診斷葛瑞夫茲氏病的替代指標。這些抗體與促甲狀腺激素受體結合後,會活化腺苷酸環化酶,並刺激甲狀腺激素生產及甲狀腺中後續的血管形成與生長[1]。TRAbs 有助於診斷葛瑞夫茲氏眼病變。雖然,TRAbs 造成葛瑞夫茲氏眼病變的正確機轉仍不清楚,但有可能是自體抗體與眼眶後組織上的促甲狀腺激素受體結合,造成淋巴細胞浸潤與後續的發炎反應。發炎產生的細胞因子會刺激成纖維細胞合成與分泌糖胺聚糖,糖胺聚糖堆積後,造成眼病變[12][13]。
阻斷型 TRAbs,又稱為「促甲狀腺激素結合抑制型免疫球蛋白(TBII)」,它會競爭性抑制促甲狀腺激素在受體上的活性。因促甲狀腺激素刺激甲狀腺激素分泌的能力減弱,而導致甲狀腺機能低下症。在橋本氏甲狀腺炎和葛瑞夫茲氏病患者身上都可能找它,並因此造成後續的甲狀腺功能高低起伏。葛瑞夫茲氏病治療期間,阻斷型抗體可能成為主要的自體抗體,進而產生甲狀腺機能低下症[2][13]。
中性型抗體的臨床和生理重要性仍不清楚。然而,它們可以造成促甲狀腺激素受體的半衰期延長[2]。
抗甲狀腺球蛋白抗體
甲狀腺球蛋白抗體(Anti-thyroglobulin Antibody,Anti-Tg)是針對甲狀腺球蛋白。甲狀腺球蛋白是一個 660kDa 的基質蛋白,它會參與甲狀腺激素的生產。70% 的橋本氏甲狀腺炎,60% 的原發性甲狀腺機能低下症,30% 的葛瑞夫茲氏病,一小部分的甲狀腺癌和 3% 的正常人身上可以測到這個自體抗體[1][3]。甲狀腺球蛋白抗體陽性者 99% 具有抗 TPO 抗體,然而,有抗 TPO 抗體的人身上只有 35% 同時具有甲狀腺球蛋白抗體[14]。
抗鈉碘同向運輸蛋白抗體
最近發現的抗鈉碘同向運輸蛋白抗體,可能是甲狀腺自體抗體的一種,它們與甲狀腺疾病的關係仍未定論。大約 20% 的葛瑞夫茲氏病和 24% 橋本氏甲狀腺炎可以找到他們[1]。
致病機轉
在葛瑞夫茲氏病,CD4+ T細胞活化後會召集B細胞進入甲狀腺,這些 B 細胞會製造針對特定甲狀腺抗原的抗體。在橋本氏甲狀腺炎,活化的 CD4+ T細胞會分泌干擾素-γ,使甲狀腺細胞在細胞表面顯示主要組織相容性複合體第II型分子,這會刺激具自體反應性的T細胞族群數量增加,並延長後續的發炎反應[15]。
雖然會用檢測抗甲狀腺抗體來追蹤與診斷自體免疫甲狀腺炎,但是一般卻認為它們不會直接破壞甲狀腺[10]。
對人類生殖的影響
孕婦身上若有抗甲狀腺抗體存在,她們發生無法解釋的生育力低下(OR 1.5,95% 信賴區間 1.1–2.0)、流產(OR 3.73, 95% CI 1.8–7.6)、反覆流產(OR 2.3, 95% CI 1.5–3.5)、早產(OR 1.9, 95% CI 1.1-3.5)和孕婦產後甲狀腺炎(OR 11.5, 95% CI 5.6–24)的風險比沒有自體抗體的孕婦高[16]。此外,近期研究發現抗 TPO 抗體陽性且甲狀腺功能正常的孕婦,若預防性使用左旋甲狀腺素並不會增加胎兒的活產率[17]。
歷史
1912年,橋本策首度描述一種合併甲狀腺機能低下症的甲狀腺腫,淋巴球會浸潤患者的甲狀腺。1956年,在此類患者體內發現抗甲狀腺球蛋白抗體,暗示這可能是一種自體免疫疾病。同年晚些,研究者發現刺激型促甲狀腺激素受體抗體。甲狀腺微粒體抗體是在1964年發現,確認其針對的抗原後,更名為抗TPO抗體[1]。
参考文献
- Saravanan P, Dayan CM. . Endocrinology and Metabolism Clinics of North America. June 2001, 30 (2): 315–37, viii. PMID 11444165. doi:10.1016/S0889-8529(05)70189-4.
- Orgiazzi J. . Endocrinology and Metabolism Clinics of North America. June 2000, 29 (2): 339–55, vii. PMID 10874533. doi:10.1016/S0889-8529(05)70135-3.
- . Endocrinology and Metabolism Clinics of North America. March 1996, 25 (1): 159–79. PMID 8907685. doi:10.1016/S0889-8529(05)70317-0.
- Utiger LE, Braverman RD. 9th. Philadelphia: Lippincott Williams & Wilkins. 2005. ISBN 0781750474.
- Taurog A. . Biochimie. May 1999, 81 (5): 557–62. PMID 10403190. doi:10.1016/S0300-9084(99)80110-2.
- Saravanan P, Dayan CM. . Endocrinology and Metabolism Clinics of North America. June 2001, 30 (2): 315–37, viii. PMID 11444165. doi:10.1016/S0889-8529(05)70189-4.
- Chardès T, Chapal N, Bresson D, Bès C, Giudicelli V, Lefranc MP, Péraldi-Roux S. . Immunogenetics. June 2002, 54 (3): 141–57. PMID 12073143. doi:10.1007/s00251-002-0453-9.
- McLachlan SM, Rapoport B. . International Reviews of Immunology. 2000, 19 (6): 587–618. PMID 11129117. doi:10.3109/08830180009088514.
- Trbojević B, Djurica S. . Srpski Arhiv Za Celokupno Lekarstvo. October 2005,. 133 Suppl 1: 25–33. PMID 16405253. doi:10.2298/sarh05s1025t.
- Melmed, Shlomo. 12th. Philadelphia: Elsevier/Saunders. 2011: 355. ISBN 978-1-4377-0324-5.
- Swain M, Swain T, Mohanty BK. . Indian Journal of Clinical Biochemistry. January 2005, 20 (1): 9–17. PMC 3454167 . PMID 23105486. doi:10.1007/BF02893034.
- Nayak B, Hodak SP. . Endocrinology and Metabolism Clinics of North America. September 2007, 36 (3): 617–56, v. PMID 17673122. doi:10.1016/j.ecl.2007.06.002.
- Kamath C, Adlan MA, Premawardhana LD. . Journal of Thyroid Research. 2012, 2012: 525936. PMC 3345237 . PMID 22577596. doi:10.1155/2012/525936.
- . Journal of the American Academy of Dermatology. May 2003, 48 (5): 641–59; quiz 660–2. PMID 12734493. doi:10.1067/mjd.2003.257.
- . Nature Reviews. Immunology. March 2002, 2 (3): 195–204. PMID 11913070. doi:10.1038/nri750.
- van den Boogaard E, Vissenberg R, Land JA, van Wely M, van der Post JA, Goddijn M, Bisschop PH. . Human Reproduction Update. 2011, 17 (5): 605–19. PMID 21622978. doi:10.1093/humupd/dmr024.
- Dhillon-Smith, Rima K.; Middleton, Lee J.; Sunner, Kirandeep K.; Cheed, Versha; Baker, Krys; Farrell-Carver, Samantha; Bender-Atik, Ruth; Agrawal, Rina; Bhatia, Kalsang. . New England Journal of Medicine. 2019-03-23, 0 (0): null. ISSN 0028-4793. doi:10.1056/NEJMoa1812537.