擬牛頓法
搜索極值
與牛頓法相同, 擬牛頓法是用一個二次函數以近似目標函數. 的二階泰勒展開是
其中, 表示的梯度, 表示Hessian矩陣的近似. 梯度可進一步近似為下列形式
令上式等於, 計算出Newton步長,
然後構造的近似滿足
上式稱作割線方程組. 但當是定義在多維空間上的函數時, 從該式計算將成為一個不定問題 (未知數個數比方程式個數多). 此時, 構造, 根據Newton步長更新當前解的處理需要回歸到求解割線方程. 幾乎不同的擬牛頓法就有不同的選擇割線方程的方法. 而大多數的方法都假定具有對稱性 (即滿足). 另外, 下表所示的方法可用於求解; 在此, 於某些範數與盡量接近. 即對於某些正定矩陣, 以以下方式更新:
近似Hessian矩陣一般以單位矩陣等作為初期值[1]. 最優化問題的解由根據近似所得的計算出的Newton步長更新得出.
以下為該算法的總結:
Method | ||
---|---|---|
DFP法 | ||
BFGS法 | ||
Broyden法 | ||
Broyden族 | ||
SR1法 |
與逆矩陣的關聯
若是一個凸二次函數,且Hessian矩陣正定,我們總是希望由擬牛頓法生成的矩陣收斂於Hessian矩陣的逆。這是基於疊代值更新最小 (least-change update) 的擬牛頓法系列的一個實例。[2]
參見
- 牛頓法
- 應用於最優化的牛頓法
參考文獻
- William H. Press. . Cambridge Press. 2007: 521-526. ISBN 978-0-521-88068-8.
- Robert Mansel Gower; Peter Richtarik. . 2015. arXiv:1602.01768 [math.NA].
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.