靈敏度和特異度
靈敏度和特異度(英語:),或稱敏感性和特異性[1],是从数学角度描述某种病症检验的准确性,在醫學中廣為使用。
- 靈敏度(,也稱為真陽性率、召回率(Recall)[2] )是指實際為陽性的樣本中,判斷為陽性的比例(例如真正有生病的人中,被判斷為有生病者的比例),計算方式是真陽性除以真陽性+假陰性(實際為陽性,但判斷為陰性)的比值[3]。
- 特異度(,也稱為真陰性率)是指實際為陰性的樣本中,判斷為陰性的比例(例如真正未生病的人中,被醫院判斷為未生病者的比例),計算方式是真陰性除以真陰性+假陽性(實際為陰性,但判斷為陽性)的比值[3]。
必須注意的是「陽性」與「陰性」這兩個詞並不指涉固定的值,僅是表示存在或不存在,當使用在不同主題時,其意義不會相同。例如應用在討論疾病時,「陽性」可以表示「染病」,「陰性」可以表示「健康」。
包括醫學診斷檢驗的許多測試中,靈敏度是指真陽性沒有被忽視的程度(所以偽陰性很少),而特異度是真陰性確實鑑別的程度(所以偽陽性很少)。因此,一個高靈敏度的檢驗很少忽略真陽性(例如:即使有異常仍然檢驗為無異常);而高特異度檢驗則很少將不是檢驗目標的其他東西鑑別為陽性(例如:檢驗出一種非常相似的細菌卻將其誤判為目標細菌)。一個高靈敏度且高特異度的檢驗表示其兩方面都做得好,所以這個檢驗「很少忽略它正在尋找的目標並且很少將其他東西誤判為目標。」
靈敏度可以作為避免假陰性的量化指標,而特異度可以作為避免假陽性的量化指標。對於任何測試而言,都需要在靈敏度及特異度之間進行取捨。例如機場安檢中對於登機人員是否有攜帶危險物品的檢查,掃描器可能會在檢查到像皮帶頭或鎖匙等低危險物品時觸發(低特異度),但會減少實際攜帶了危險物品,但沒有檢查到的可能性(高靈敏度)。這個取捨可以用ROC曲线(接收者操作特徵曲線)來表示。完美的分類器可以達到100%的靈敏度(所有生病的人都會檢測為生病),及100%的特異度(沒有一個健康不生病的人會被檢測為生病)。但是理論上所有的分類器都會有最小的誤差範圍,稱為贝叶斯错误率。
舉例
在個100人的樣本中,有10人事實上患有A病(陽性),經過檢測後,9人判定患有A病(真陽性),而1人判定並不患有A病(假陰性); 另外的90人實際上并不患有A病(陰性),然後經過檢測後,其中的5人被判定患有A病(假陽性),另外的85人判定不患有A病(真陰性)。
靈敏度=真陽性/(真陽性+假陰性)=9/(9+1)=90%;
特異度=真陰性/(真陰性+假陽性)=85/(85+5)=94.4%.
此處,靈敏度即為在患病人群中,成功確證患病的概率;而特異度即為在不患病的人群中,成功排除患病的概率。