旋轉曲面
面积
如果曲线由参数方程、给出,其中,且旋转轴是轴,则旋转曲面的面积由以下的积分给出:
条件是非负。这个公式与古尔丁定理是等价的。
来自勾股定理,表示曲线的一小段弧,像弧长的公式那样。是这一小段的(重心的)路径。
如果曲线的方程是y = f(x),a ≤ x ≤ b,则积分变为:
- (绕着x轴旋转),
- (绕着y轴旋转)。
这可以由以上的公式推出。
例如,单位半径的球面由曲线x(t) = sin(t),y(t) = cos(t)旋转而得,其中。所以,它的面积为:
对于半径为r的圆绕着x轴旋转所得的曲面,
参见
参考文献
- Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 931-937, 1985.
- Goldstein, H. Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, p. 42, 1980.
- Gray, A. "Surfaces of Revolution." Ch. 20 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 457-480, 1997.
- Hilbert, D. and Cohn-Vossen, S. "The Cylinder, the Cone, the Conic Sections, and Their Surfaces of Revolution." §2 in Geometry and the Imagination. New York: Chelsea, pp. 7-11, 1999.
- Isenberg, C. The Science of Soap Films and Soap Bubbles. New York: Dover, pp. 79-80 and Appendix III, 1992.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.