朱歆文
朱歆文(1982年—),四川人,加州理工学院数学系教授。他的工作主要是研究几何表示论特别是朗兰兹纲领,旨在将数论和量子物理学联系在一起。朱歆文的研究发表在数学年刊、Inventiones mathematicae等杂志上。他的重要合作者包括张伟、袁新意和恽之玮。[1]
生平
朱歆文于2004年在北京大学获得数学学士学位,2009年在加州大学伯克利分校获得博士学位,导师是爱德华·弗伦克尔。之后,他在哈佛大学担任教本杰明·皮尔斯讲师、西北大学助理教授。2014年,朱歆文成为加州理工学院的教师。据美国数学学会介绍:“(朱)研究圈群旗簇的几何和拓扑,并将几何朗兰兹纲领的技术应用于算术几何。”[2]
部分著作
- (与Edward Frenkel) "Gerbal Representations of Double Loop Groups", Int. Math. Res. Not. IMRN 2012 (2012), No. 17, 3929–4013.
- (与George Pappas]) "Local models of Shimura varieties and a conjecture of Kottwitz" (页面存档备份,存于), Invent. Math. 194 (2013), No. 1, 147–254.
- "On the coherence conjecture of Pappas and Rapoport" (页面存档备份,存于), Ann. of Math. 180 (2014), No. 1, 1–85.
- (与Denis Osipov) "A categorical proof of the Parshin reciprocity laws on algebraic surfaces" (页面存档备份,存于), Algebra Number Theory 5 (2011), No. 3, 289–337.
- "Affine Demazure modules and T-fixed point subschemes in the affine Grassmannian" (页面存档备份,存于), Adv. Math. 221 (2009), No. 2, 570–600.
- "Affine Grassmannians and the geometric Satake in mixed characteristic", Ann. of Math., to appear in forthcoming issue.
- (与Edward Frenkel) "Any flat bundle on a punctured disc has an oper structure", Math. Res. Lett. 17 (2010), no. 1, 27–37.
- "The geometric Satake correspondence for ramified groups", Ann. Sci. Ec. Norm. Super. 48 (2015), no. 2, 409–451.
- (与恽之玮) "Integral homology of loop groups via Langlands dual groups", Represent. Theory 15 (2011), 347–369.
- (with An Huang, Bong H. Lian) "Period integrals and the Riemann–Hilbert correspondence" (页面存档备份,存于), J. Differential Geom. 104 (2016), No. 2, 325–369.
- (与Tsao-Hsien Chen) "Geometric Langlands in prime characteristic", preprint.
参考资料
- "Math Quartet Joins Forces on Unified Theory" (页面存档备份,存于), Quanta Magazine. Retrieved on 3 December 2016.
- "Mathematics People" (页面存档备份,存于), Notices of the AMS. Retrieved on 3 December 2016.
- "Caltech Professors Awarded 2015 Sloan Fellowships" (页面存档备份,存于), Caltech. Retrieved on 3 December 2016.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.