零空间
在数学中,一个算子 A 的零空间是方程 Av = 0 的所有解 v 的集合。它也叫做 A 的核(核空间)。用集合建造符号表示为
尽管术语核更加常用,术语零空间有时用在避免混淆于积分变换的情境中。应当避免把零空间混淆于零向量空间,它是只有零向量的空间。
例子
1. 考虑函数 :
- ,
- 它是一个线性映射,因为 。它的零空间由所有第一个和第二个坐标一致的向量组成,就是说描述了一条直线 。
2. 在一个线性空间中固定一个向量 并定义线性映射 为向量 和 的点积。它的零空间由所有正交于 的向量,即 的正交补组成。
性质
如果 A 是矩阵,它的零空间就是所有向量的空间的线性子空间。这个线性子空间的维度叫做 A 的零化度(nullity)。这可以计算为在矩阵 A 的阶梯形矩阵中不包含支点的纵数。秩-零化度定理声称任何矩阵的秩加上它的零化度等于这个矩阵的纵数。
对应于零奇异值的 A 的右奇异向量形成了 A 的零空间的基。
A 的零空间可以用来找到和表达方程 Ax = b 的所有解(完全解)。如果 x1 是这个方程的一个解,叫做特定解,那么方程的完全解等于它的特定解加上来自零空间的任何向量。特定解依 b 而变化,而零空间的向量不是。
要证明这一点,我们考虑每个方向。在一个方向上,如果 Ay = b,且 Av = 0,则明显的 A(y+v) = Ay+Av = b+0 = b。所以 y+v 也是 Ax=b 的解。在其他方向上,如果我们有对 Ax=b 的另一个解 z,则 A(z−y) = Az−Ay = b−b = 0。所以向量 u = z−y 在 A 的零空间中而 z = y+u。所以任何解都可以表示为一个零空间中的向量加上特定解 y 。
如果一个线性映射 A 是单同态,则它的零空间是零。因为如果反过来它的零空间是非零,由类似上面的方法可以得出Ay = b的解不止一个,也就是说线性映射 A 不是单射了。
如果映射是零映射,则零空间同于映射的定义域。
找到一个矩阵的零空间
考虑矩阵
要找到它的零空间,须找到所有向量 使得 。首先把 变换成簡化阶梯形矩阵:
有 当且仅当 。使用符号 ,后者方程变为
所以, 的零空间是一维空间,
外部链接
- MIT Video Lecture on Column Space and Nullspace (页面存档备份,存于)at MIT OpenCourseWare
- http://www.bilibili.com/video/av6240005/ (页面存档备份,存于)