氧的同位素

原子量:15.9994)共有18個已知同位素質量數介於11-28之間,其中有3個是穩定的,分別是16O、17O、18O,其中以16O占天然氧的絕大部分,豐度為99.76%。在氧的放射性同位素当中,15O半衰期最长,达122.266秒;而原子核滴线外的11O半衰期最短,只有1.98×10-22秒,但目前仍未测量同处原子核滴线外的27O和28O的半衰期。[2]

主要的氧同位素
同位素 衰變
丰度 半衰期 (t1/2) 方式 能量
MeV
產物
15O 痕量 122.266  β+ 1.732 15N
16O 99.757% 穩定,帶8粒中子
17O 0.038% 穩定,帶9粒中子
18O 0.205% 穩定,帶10粒中子
標準原子質量 (Ar, 標準)
  • [15.99903, 15.99977][1]
  • 傳統: 15.999
←N7 F9

圖表

符號 Z(
p
N(
n
同位素質量(u 半衰期 衰變
方式
[3]
衰變
產物
[n 1]
原子核
自旋
相對豐度
莫耳分率)
相對豐度的變化量
(莫耳分率)
11O[4] 8 3 11.05125(6) 1.98(22)×10−22 s
[2.31±0.14 MeV]
2p 9C (3/2−)
12O 8 4 12.034405(20) 580(30)×10−24 s
[0.40(25) MeV]
2p (60.0%) 10C 0+
p (40.0%) 11N
13O 8 5 13.024812(10) 8.58(5) ms β+ (89.1%) 13
N
(3/2−)
β+, p (10.9%) 12
C
14O 8 6 14.00859625(12) 70.598(18) s β+ 14
N
0+
15O 8 7 15.0030656(5) 122.24(16) s β+ 15N 1/2−
16O[n 2] 8 8 15.994914619257(319) 稳定 0+ 0.99757(16) 0.99738–0.99776
17O[n 3] 8 9 16.999131755953(692) 稳定 5/2+ 3.8(1)×10−4 3.7×10−4–4.0×10−4
18
O
[n 2][n 4]
8 10 17.999159612136(690) 穩定 0+ 2.05(14)×10−3 1.88×10−3–2.22×10−3
19O 8 11 19.003580(3) 26.464(9) s β 19F 5/2+
20O 8 12 20.0040767(12) 13.51(5) s β 20F 0+
21O 8 13 21.008656(13) 3.42(10) s β 21F (5/2+)
22O 8 14 22.00997(6) 2.25(15) s β (78.0%) 22F 0+
β, n (22.0%) 21F
23O 8 15 23.01569(13) 82(37) ms β, n (57.99%) 22F 1/2+
β (42.0%) 23F
24O 8 16 24.02047(25) 77.4(45) ms β, n (57.99%) 23F 0+
β (42.01%) 24F
25O 8 17 25.02934(18) 5.18(35) zs n 24O 3/2+#
26O 8 18 26.03721(18) 4.2(3.3) ps 2n 24O 0+
27O[2] 8 19 3n 24O
28O[2] 8 20 4n 24O 0+

備註:畫上#號的數據代表沒有經過實驗的証明,只是理論推測而已,而用括號括起來的代表數據不確定性。

穩定同位素

在大質量恆星的老年期,16O於氧殼合成,17O於氫殼合成,18O於氦殼合成。

氧的3種穩定同位素16O、17O、18O,其中16O最多,豐度為99.762 %[5]

16O的豐度最大可以由恒星演化論解釋。大爆炸產生宇宙時僅形成了元素,其他元素都是透過後來的恒星中進行的核聚變反應合成的[6]。在恒星内,質子-質子鏈反應碳氮氧循環首先進行,「燃燒」產生。隨着燒氫的進行,核在自身重力下收縮,中心温度上昇,當温度超過約1億K時,「燃燒」氦的3氦過程開始,由此產生12C,然後又與氦(4He)原子核反應生成16O。大部分的16O由此產生。

17O的豐度為0.037%,18O為0.204%,是微量的穩定同位素。17O主要是在恆星的碳氮氧循環中,氫燃燒產生氦時合成的[6]。而18O是14N捕獲4He合成的(14N由碳氮氧循環產生)。因此,17O主要於恒星的氫殼富集,18O主要於恒星的氦殼富集。[6]

放射性同位素

氧有十三种放射性同位素已获得表征,其中最稳定的是半衰期122.24秒的15O和半衰期70.606秒的14O。[5]剩下的放射性同位素的半衰期都小于27秒,大部分甚至小于0.1秒。[5]半衰期77.4毫秒的24O和28Ne都被用于研究中子星表面的核反应。[7]对于轻于稳定同位素的氧同位素,它们最常见的衰变模式β+衰变[8][9][10]而较重的同位素则通过β衰变衰变成

氧-15

氧-15是氧的放射性同位素,常以氧-15水的形式用于正电子断层扫描(PET)的心肌灌注成像成像。[11][12]它有8个质子和7个中子,原子量为15.0030654 amu,半衰期122.24秒。[13]氧-15可以由在回旋加速器中用轰击氮-14而成。[14]

氧-15和氮-13分别由γ射线把大气中的氧-16和氮-14的一个中子轰掉而成:[15]

16O + γ → 15O + n
14N + γ → 13N + n

氧-15会以约两分钟的半衰期衰变成氮-15,并放出一个正电子。这个正电子迅速和一个电子湮灭,并产生两个能量约为511 keV的γ射线。这些低能量的γ射线只能在空气中移动90米。它和来自氮-13的正电子产生的γ射线一样只能在一分钟内左右检测到,因为15O和13N的“云”会随风飘散。[16]

同位素列表
氮的同位素 氧的同位素 氟的同位素

註釋

  1. 稳定同位素以粗体显示
  2. 16O和18O之间的比例用于测量δ18O
  3. 可用于代谢途径的NMR研究
  4. 可用于研究某些代谢途径

参考文献

  1. Meija, Juris; et al. . Pure and Applied Chemistry. 2016, 88 (3): 265–91. doi:10.1515/pac-2015-0305.
  2. Kondo, Y.; Achouri, N. L.; Falou, H. Al; et al. . Nature (Springer Science and Business Media LLC). 2023-08-30, 620 (7976): 965–970. ISSN 0028-0836. doi:10.1038/s41586-023-06352-6.
  3. 需要免费注册. Nucleonica. [2014-12-02]. (原始内容存档于2017-02-19).
  4. Webb, T. B.; et al. . Physical Review Letters. 2019, 122 (12): 122501–1—122501–7. arXiv:1812.08880可免费查阅. doi:10.1103/PhysRevLett.122.122501.
  5. . EnvironmentalChemistry.com. [2007-12-17]. (原始内容存档于2020-08-18).
  6. Meyer, B.S. (PDF). . Workgroup on Oxygen in the Earliest Solar System. Gatlinburg, Tennessee. September 19–21, 2005 [2007-12-23]. 9022. (原始内容存档 (PDF)于2010-12-29).
  7. Berry, D.K; Horowitz, C.J. . April 2008 [2023-09-08]. doi:10.1103/PhysRevC.77.045807. (原始内容存档于2023-09-23).
  8. . [2009-07-06]. (原始内容存档于2008-09-24).
  9. . [2009-07-06]. (原始内容存档于2008-09-24).
  10. . [2009-07-06]. (原始内容存档于2011-07-21).
  11. Rischpler, Christoph; Higuchi, Takahiro; Nekolla, Stephan G. . Current Cardiovascular Imaging Reports. 22 November 2014, 8 (1): 333–343. doi:10.1007/s12410-014-9303-z.
  12. Kim, E. Edmund; Lee, Myung-Chul; Inoue, Tomio; Wong, Wai-Hoi. . Springer. 2012: 182 [2022-02-10]. ISBN 9781441908025. (原始内容存档于2022-02-10) (英语).
  13. . Medical-dictionary.thefreedictionary.com. [2014-12-02]. (原始内容存档于2022-02-10).
  14. . Austin Hospital, Austin Health. [6 December 2012]. (原始内容存档于15 January 2013).
  15. Timmer, John. . Ars Technica. 25 November 2017 [2022-02-10]. (原始内容存档于2022-02-10) (美国英语).
  16. Teruaki Enoto; et al. . Nature. Nov 23, 2017, 551 (7681): 481–484. Bibcode:2017Natur.551..481E. PMID 29168803. arXiv:1711.08044可免费查阅. doi:10.1038/nature24630.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.