波形因數

波形因數英文Form factor)是交流訊號中的一個無因次量,可以用來表示,是訊號的均方根值和整流平均值的比值[1]。波形因數是相同功率的直流訊號和原交流訊號整流後平均值的比值[2]

計算

對於一個理想的,對時間T連續的函數,其均方根可以表示為以下的積分[3]

整流平均值為函數絕對值的平均[3]

兩者的比值即為波形因數

應用

數位式的交流量測設備一般是針對弦波而設計的,例如許多交流電表會特別針對弦波的均方根值來進行調整。由於很難利用數位方式計算一訊號的均方根值,一般會改為計算弦波訊號的整流平均值,然後再乘以弦波的波形因數。不過若利用此方法計算其他波形的均方根值,會得到較不精確的結果[4]

性質

波形因數是訊號的均方根值和整流平均值的比值,因此二個值之間類似及不同的性質決定了波形因數的性質。

例如均方根值和整流平均值都和振幅成正比,不過波形因數是二者相除,因此不受振幅的影響。一個特定的波形,若不失真的放大或縮小N倍,其波形因數不變。

均方根值計算時會用到訊號的平方,而整流平均值會用到訊號的絕對值,二者都不受正負號的影響。因此波形因數也不受正負號的影響,一個平均值為零的方波和其整流後的訊號,其波形因數相等。

波形因數是訊號的均方根值和整流平均值的比值,此外還有二個類似定義的因數:

  • 峰值因數,最大值和均方根值的比值。
  • 平均因數:,最大值和整流平均值的比值,較少用到。

波形因數是三個因數中最小的一個:

[2]

由於他們的定義都和最大值、均方根值和整流平均值有關,三個因數間有以下的關係:

,[2]

因此也可以用峰值因數和平均因數來表示波形因數:

.

特定波形的波形因數

若用表示波形的振幅,由於均方根值和整流平均值都和振幅成正比,二者對波形因數的影響恰好互相抵消,因此波形因數和振幅無關。像的波形因數相等,因此可以用正規化,振幅為1的波形來計算波形因數。

波形波形圖RMSARV波形因數
弦波[2][2][3]
半波整流的弦波
全波整流的弦波
方波(占空比50%)
脈波[5]
三角波[5]
鋸齒波
白雜訊 U(-1,1)

相關條目

參考資料

  1. Stutz, Michael. . BASIC AC THEORY. [30 May 2012]. (原始内容存档于2015-04-23).
  2. Dusza, Jacek; Grażyna Gortat, Antoni Leśniewski. . Warszawa: Wydawnictwo Politechniki Warszawskiej. 2002: 136–142, 197–203, 323. ISBN 83-7207-344-9 (波兰语).
  3. Jędrzejewski, Kazimierz. . Warsaw: Wydawnictwo Politechniki Warszawskiej. 2007: 86–87. ISBN 978-83-7207-4 (波兰语).
  4. Tanuwijaya, Franky. (PDF). Esco Micro Pte Ltd. [2012-12-13]. (原始内容存档 (PDF)于2019-07-13).
  5. Nastase, Adrian. . [9 June 2012]. (原始内容存档于2021-02-05).

外部連結

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.