深度 (模論)

交換代數中, 深度交換環的一種不變量,它可以由正則序列定義,或以同調代數中的Ext函子刻劃。

正則序列

交換環-模。若元素 滿足 (即: 的零因子),則稱之為 -正則元

一組 M-正則序列是一個 中的有限序列 ,使得對每個

-正則元(置

定理(Rees):若 局部諾特環,元素皆屬於 的正則序列之置換仍是正則序列,而且這類序列中的極大者都具相同長度。

深度

假設同上,並固定一個理想 。定義-模 I-深度為元素皆屬於 -正則序列的最大長度,記作 (在法文文獻中常記作 )。環 -深度定義為

亦可用Ext函子刻劃為使得 的最小非負整數

下列等式將深度問題化約到局部環的情形:

以下定理揭示了深度與射影維度的關係。

定理 (Auslander-Buchsbaum):設 為局部諾特環 為有限生成 -模,而且其射影維度有限,則

文獻

  • V.I. Danilov, , Hazewinkel, Michiel (编), , Springer, 2001, ISBN 978-1-55608-010-4
  • David Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry. Springer Graduate Texts in Mathematics, no. 150. ISBN 0-387-94268-8
  • Winfried Bruns; Jürgen Herzog, Cohen-Macaulay rings. Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge, 1993. xii+403 pp. ISBN 0-521-41068-1
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.