特徵標理論
在數學裡,尤其是在群表示理論裡,一個群表示的特徵標()是一個將群的每個元素映射對應矩陣的跡(Trace)的函數。特徵標蘊藏著群的許多重要性質,且因此可以用來做群的研究。
特徵標理論是對有限簡單群分類的一個有重要的工具。在范特-湯普遜定理證明接近一半的地方會有一個用到特徵標的複雜計算。另外還有一些較簡單但一樣重要的結論需用在特徵標理論,如伯恩賽德定理及理查·布勞爾和鈴木通夫所證出之定理,此定理表示有限簡單群不會有一個為廣義四元群的西洛2-子群。
定義
設V為一個域F上的有限維向量空間且設為一個群G於V上的表示。則ρ的特徵標即為如下給定之函數
其中為矩陣的跡數。
一個特徵標χρ若被稱為是不可約的,即表示ρ是一個不可約表示。若被稱為是線性的,則表示ρ的維度等於1。χρ的核為集合
其中是χρ在群單位元上的值。當ρ是G的k維表示且1為G的單位元時,
和特徵標群的情況不同,一個群的特徵標通常不會自己「形成」一個群。
拓撲群的情形
在調和分析中,通常定義局部緊阿貝爾拓撲群 的特徵標為連續群同態 ;在此, 表示單位圓構成的群,等價地說就是 。
部份作者將特徵標的定義放寬為連續群同態 ,而將取值在 者稱作么特徵標。其他人則保留原初定義,而將這類廣義的特徵標稱為擬特徵標。
的全體特徵標構成一個群 ,群二元運算的定義是 ,稱為對偶群。龐特里雅金對偶性總結了對偶群的一般性質。
性質
- 特徵標是一個類函數,即為對一個共軛類內的所有元素來說,χ會是個常數。
- 若一個表示可以是多個子表示的直和:,則其相對應的特徵標會是其所有子表示的特徵標之和:。
- 在有限群的情况下,每個特徵標都是n個m次單位根之和,其中n為表示內域的維度,m則是g的阶。
- 若F是代數封閉的且char(F)不可以整除G的阶|,則G的不可約特徵標之數量等於G的共軛類數: 。
特徵標的誘導與限制
設 為有限群, 為其子群,而 為 G 的表示,其特徵標記為 。令 為誘導表示 的特徵標;根據弗羅貝尼烏斯互反定理,對所有 的特徵標 ,恆有下述等式
此等式可用來刻劃類函數 。事實上,若選定陪集分解
還可以明確地寫下 的取值:
特徵標表
一個有限群的不可約特徵標可以形成一個特徵標表,其蘊含著許多有關群G在緊緻形式時的有用資訊。每一行標記著一個不可約特徵標且包含著此一特徵標在每個G的共軛類上的值。
下面是有三個元素之循環群C3的特徵標表:
(1) | (u) | (u2) | |
1 | 1 | 1 | 1 |
χ1 | 1 | u | u2 |
χ2 | 1 | u2 | u |
其中的u為一個原三次單位根。
特徵標表總會是正方的,因為不可約表示的數目總會相等於共軛類的數目。特徵標表的第一個行總會是1,其對應至群的當然表示上。
參考文獻
- Fulton, William; and Harris, Joe. . Springer, New York. 1991. ISBN 978-0-387-97495-8. 見第2章
- Isaacs, I.M. . Dover. 1994. ISBN 978-0-486-68014-9. 1976年原版的修正重印版,由Academic Press所出版
- James, Gordon; and Liebeck, Martin. . Cambridge University Press. 2001. ISBN 978-0-521-00392-6.
- http://planetmath.org/encyclopedia/Character.html (页面存档备份,存于)
- 化學中重要的點群的特徵標表 - 列出了大多數的點群並其在化學中使用之符號的特徵標表。