生成矩阵
术语
若 G 为一矩阵,它生成线性码 C 的码字的方式为,
- w = s G,
其中 w 是线性码 C 的一个码字,而 s 是任意向量。[1] 线性 码的生成矩阵的格式为 ,其中 n 为码字的长度,k 为信息比特的数量(作为向量子空间的 C 的维数),d 为码的最小距离,而 q 为有限域的大小, 即字典中符号的个数(因此 q = 2 表示二元码,等等。)冗余比特的数量用 r = n - k 表示。
生成矩阵的标准形式为,[2]
- ,
其中 是 k×k 單位矩陣而 P 是 k×r 矩阵。当生成矩阵为标准形式时,码 C 在其前 k 个坐标位置为系统码。[3]
生成矩阵可以用来构建一个码的奇偶檢驗矩陣(反过来也可以)。如果生成矩阵 G 是标准形式 ,那么 C 奇偶校验矩阵就是[4]
- ,
参见
- (7,4)汉明码
注释
- MacKay, David, J.C. (PDF). Cambridge University Press. 2003: 9. ISBN 9780521642989.
Because the Hamming code is a linear code, it can be written compactly in terms of matrices as follows. The transmitted codeword is obtained from the source sequence by a linear operation,
where is the generator matrix of the code... I have assumed that and are column vectors. If instead they are row vectors, then this equation is replaced by
The rows of the generator matrix can be viewed as defining the basis vectors.
- Ling & Xing 2004,p. 52
- Roman 1992,p. 198
- Roman 1992,p. 200
- Pless 1998,p. 8
参考文献
- Ling, San; Xing, Chaoping, , Cambridge University Press, 2004, ISBN 0-521-52923-9
- Pless, Vera, 3rd, Wiley Interscience, 1998, ISBN 0-471-19047-0
- Roman, Steven, , GTM 134, Springer-Verlag, 1992, ISBN 0-387-97812-7
- Welsh, Dominic, , Oxford University Press, 1988, ISBN 0-19-853287-3
延伸阅读
- MacWilliams, F.J.; Sloane, N.J.A., , North-Holland, 1977, ISBN 0-444-85193-3
外部链接
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.